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About me

* Undergraduate in Physics and Math
(France) then MS Engineering Systems
at MIT on climate economics (carbon
markets and refineries)

* Climate technology entrepreneur (Plume
Labs, acq. by AccuWeather)

« MS ChemEng HCP candidate with a
focus on Al for chemistry.

e (Goal: build better materials/processes
to help decarbonize at scale.
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Outline

* Al crash course
» Extracting molecular properties from natural language
* Discovering catalysts with reinforcement learning

e Conclusion: new frontiers in Al for materials
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An Al Crash

Course




Neural networks

They’re just (very) complex functions.

* |nspired by biological neurons

» Activations: multiply inputs by matrix
weights + apply non-linearities

* Universal Approximation Theorem
(Cybenko, 1989)

 How to find the right weights?
Learn by gradient descent!

Learn more: CS 230 WikiMedia
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Why all the hype?

Because these ideas finally work!

* First neural networks conceptualized in the 1950s: intractable to train.

o Started working well c. 2012: large networks learning from large datasets.
« 2010s-2020s: Deep Learning Era

 “|earning”: don’t program rules, learn them from the data

* Deep: represent these functions as large neural networks
(“deep” = large number of hidden layers)

Learn more: CS 230
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Paradigm shift: learning from data
Enabled by GPUs and data scale

Classical
Data —a=| Programming

— Answers

Data —» :
Machine Rules

Answers — learning

Source: Francois Cholet, “Deep Learning with Python”

. earn more: CS 229 Source: ImageNet Large Scale Visual Recognition Challenge
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(shifted right)

Krizhevsky et al., 2012, ImageNet Classification with
Deep Convolutional Neural Networks

Learn more: CS 231N

Vaswani et al., 2017, Attention Is All You Need

Learn more: CS 224N & CS 224U

Stanford
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Flavors of learning

Different recipes, same neural nets

o Supervised learning: learn to match a value/label Learn more: CS 230
Ex: classification (image — dog or cat?), regression (molecule — solubility?)

 Generative learning: learn to generate an object

Ex: AA sequence — 3d structure of a protein (AlphaFold) o oo R oA

* Reinforcement learning: learn through play

Ex- play millions of games - beat humans at Go (AlphaGo) Learn more: CS 224R

 Contrastive learning: learn to match/contrast samples

Learn more: CS 224W
Ex: several face photographs — are they the same person?
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Why is this relevant?

Two examples of ChemE applications

 Molecular properties prediction: learn to predict properties of an organic

molecule given only its 2-d graph structure.
ACS Fall 2023 Al for Organic Chemistry workshop

o Catalyst discovery: explore large spaces of possible metal catalysts fitting a
target adsorption energies profile.
NeurlPS 2023 Accelerated Materials Discovery workshop
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Extracting molecular
properties from
natural language

https://arxiv.org/abs/2307.12996
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Contrastive learning

* Tasks in ML for chemistry require deep molecular graph representations

 GNNSs can be trained to learn effective representations through
contrastive learning:
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Molecular Graphs A P

Latent Space
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Can we learn directly from scientific papers?

Treasure trove of collective knowledge now accessible.

Abstract

Deep learning in computational biochemistry has
traditionally focused on molecular graphs neu-
ral representations; however, recent advances in
language models highlight how much scientific
knowledge is encoded in text. To bridge these two
modalities, we investigate how molecular prop-
erty information can be transferred from natural
language to graph representations. We study prop-
erty prediction performance gains after using con-
trastive learning to align neural graph representa-
Romain Lacombe! Andrew Gaut' Jeff He' David Liideke ! Kateryna Pistunova' tions with representations of textual descriptions

of their characteristics. We implement neural
relevance scoring strategies to improve text re-
trieval, introduce a novel chemically-valid molec-
ular graph augmentation strategy inspired by or-
ganic reactions, and demonstrate improved per-

ACS Fall 2023 Al for Organic Chemistry workshop ermane o vt ol oy
classification tasks. We achieve a +4.26% AU-

ROC gain versus models pre-trained on the graph

https -//arxiv O rg/abs/z 307 "I 2 996 modality alone, and a +1.54% gain compared to
" " " the recently proposed molecular graph/text con-

trastively trained MoMu model (Su et al., 2022).

Extracting Molecular Properties from Natural Language with Multimodal
Contrastive Learning
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Aligh graph and text latent representations

Using contrastive learning.

- T e

/\\/: > Textual descriptions of the
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Do aligned representations improve property predictions?
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Aligning graph and text representations

Using contrastive learning.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Retrieval Sampletext % : Pre-trained % . Contrastive Encoder Evaluation on
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............................. | 7o 7
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/arxiv.org/abs/2209.05481 (7, 6) ngmexp (cos(zT z])/7)
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https://arxiv.org/abs/2209.05481

Could we generate molecules from text?

O
N N/
~$ su O apt-ge N
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N -
Text prompt Molecular graph
(make me coffee’) (Caffeine =)
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Answer: yes!

But not very well.

“This molecule has
Prompt a hydroxyl group
and a carbonyl group™

“This molecule Is
hazardous for health”

‘C' HO O'

Generation NN
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Experiment: evaluation

MoleculeNet benchmark.

Evaluate graph * MUV: virtual molecule oo e

representations on screening built on Y i Evaluationon |

property prediction tasks PubChem. - Encoder /1 downstream tasks

(MoleculeNet) s .

* SIDER: adverse side

 BACE: inhibitors of a reactions of marketed X
human enzyme involved drugs. fe: ¥ =2y  MLP(-)°f;:9 = ¥g
in Alzheimer.

e Tox21: classification of

 BBBP: blood-brain toxicity measured by
barrier penetration by biological reactions and ® MOLeCULeNet
small molecules. stress response.

* Clintox: classification of ¢ ToxCast: 600 tasks
drugs approved/rejected linked to in vitro
by the FDA for toxicity. toxicology data.
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Graph only

Graph
+ natural
language text

Romain Lacombe

Results

Experiment BACE BBBP Tox21 ToxCast SIDER ClinTox MUV

Graph only pre-training 70 65.8 74 63.4 57.3 58 71.8
: Baseline (MoMu) 70.31 £3.67 68.04 +£1.67 74.6 +0.68 63.27 £0.53 59.39 £0.51 61.09 £1.1 75.66 £0.55 -
Baseline (pruned) 71.14 £1.93 67.86 £2.1 74.77 £0.37 62.71 1.3 59.31 +0.72 61.17 £1.39 75.18 +1.06 :
Baseline (relevant) 72.13 £0.47 68.73 +2.21 74.85 +0.3 6247 £0.66 60.05 +0.7 59.99 +1.73 74.47 £0.95 :
Mean cosine similarity (best) 72.6 £2.77  68.48 £1.68 74.54 +0.7  63.37 £0.72 60.07 £0.41 61.36 £3.36 75.07 £1.13
- Max cosine similarity (best) 72.71 £0.59  68.27+£2.35 74.777+0.45 63.73 £0.59 60.14 £1.05 62.28 +1.61 75.15+1.07 :
- Sentence cosine similarity (best) 72.05 £0.52  68.11 £2.5 74.94 £0.79 63.6 £0.29 59.84 +0.24 61.47 £2 74.61 £0.27 .

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each MoleculeNet dataset, reported
for each pre-training experiment and baseline model/dataset.

Stanford
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Experiment: Can Al learn from chemistry?

 GraphCL (You et al. 2020) contrastive pre-training uses random node
dropping and random subgraphs:

Table 1: Overview of data augmentations for graphs.

Data augmentation Type Underlying Prior
Node dropping Nodes, edges Vertex missing does not alter semantics.
Edge perturbation Edges Semantic robustness against connectivity variations.
Attribute masking Nodes Semantic robustness against losing partial attributes.
Subgraph Nodes, edges Local structure can hint the full semantics.

Q No guarantee that augmented graphs are valid molecules!

You et al. 2020: https://arxiv.org/abs/2010.13902
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https://arxiv.org/abs/2010.13902

Random graph augmentations can lead
to strong contrasts in chemical space

* EX: random subgraph.

\N/\/N/> \~/\//N/> N/\‘
A~ PN N

@ Very different molecule
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Random graph augmentations can lead
to strong contrasts in chemical space

* EX: drop random atom.

O

O i Random /
nodedro w

\N/ﬂ\/N/ \~/ > \N/ N>

O/\N/\N/> N / / " /\N/\N/

@ Very different molecule
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Random graph augmentations can lead
to invalid molecules

* EX: drop random atom.

\N /\/N/> \~/\/N/> \N/\/N>
O/\N/‘\N/ O%N/LN/ 0 N/\N/
Random
node drop Q Disconnected )/
graph
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What if we used organic reactions as graph
augmentations?

Idea: use addition/elimination organic reactions!
Transform initial graph into better behaved augmentations

CH;y = /R—-CHs3'+ H»

NH; —= R—NH» + H»

Initial
molecule
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What if we used organic reactions as graph
augmentations?

e Ex: methylation/de-methylation. R-H + CHy == R—CH3 + Hy

\N/\/"> \~/\/"/>
A At PP
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What if we used organic reactions as graph
augmentations?

e Ex: amination/de-amination. R—H + NH; — R—NH, + H,

\N/\/"/> \N/\/"/>
0 /\N/|\N/ 0 /\N/|\N/
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Results

Experiment BACE BBBP Tox21 ToxCast SIDER ClinTox MUV
Graph only Graph only pre-training 70 65.8 74 63.4 57.3 58 71.8
Baseline (MoMu) 70.31 £3.67 68.04 £1.67 74.6 £0.68  63.27 £0.53 59.39 £0.51 61.09£1.1  75.66 +0.55
Baseline (pruned) 71.14 £1.93 67.86 £2.1 74.77 £0.37 62.71 1.3 59.31 £0.72 61.17 £1.39 75.18 +1.06
Graph Baseline (relevant) 72.13 £0.47 68.73 £2.21 74.85+0.3 6247 £0.66 60.05+0.7  59.99 £1.73  74.47 £0.95
+ natural

Ianguage text Mean cosine similarity (best) 72.6 £2.77  68.48 £1.68 74.54 +0.7  63.37 £0.72 60.07 £0.41 61.36 £3.36 75.07 £1.13
Max cosine similarity (best) 72.71 £0.59 68.27 £2.35 74.77 045 63.73 £0.59 60.14 £1.05 62.28 £1.61 75.15 £1.07

Sentence cosine similarity (best) ~72.05 £0.52  68.11 £2.5 74.94 £0.79 63.6 £0.29 59.84 +0.24 61.47 £2 74.61 £0.27

*" Principled graph augmentation 71.45 +2.24 69.23+0.93 74312036 62.61+0.49 61.33+0.69 58.97+222 75.03+1.52

\ J L 4

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each MoleculeNet dataset, reported
for each pre-training experiment and baseline model/dataset.
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Catalysts
discovery with

reinforcement
learning

https://arxiv.org/abs/2312.02308




RL for catalysts discovery

Al can master Go. What about materials?

Abstract
AdsorbRL: Deep Multi-Objective Reinforcement

Learning for Inverse C atalysts Design A central challenge of the clean energy transition is the development of catalysts for
low-emissions technologies. Recent advances in Machine Learning for quantum

chemistry drastically accelerate the computation of catalytic activity descriptors
such as adsorption energies. Here we introduce AdsorbRL, a Deep Reinforcement
Learning agent aiming to identify potential catalysts given a multi-objective binding

Romain Lacombe Lucas Hendren Khalid El-Awady energy target, trained using offline learning on the Open Catalyst 2020 and Materi-
Stanford University Stanford University Stanford University als Project data sets. We experiment with Deep Q-Network agents to traverse the
space of all ~160,000 possible unary, binary and ternary compounds of 55 chemi-

{rlacombe, hendren, kae}@stanford.edu cal elements, with very sparse rewards based on adsorption energy known for only

between 2,000 and 3,000 catalysts per adsorbate. To constrain the actions space,
we introduce Random Edge Traversal and train a single-objective DQN agent on
the known states subgraph, which we find strengthens target binding energy by an
average of 4.1 eV. We extend this approach to multi-objective, goal-conditioned

N e u rI P S 2 O 2 3 AI fO r ACCG I e rated learning, and train a DQN agent to identify materials with the highest (respectively

lowest) adsorption energies for multiple simultaneous target adsorbates. We experi-

M ate rl a I S DeS | g n WO rkS h O p ment with Objective Sub-Sampling, a novel training scheme aimed at encouraging

exploration in the multi-objective setup, and demonstrate simultaneous adsorption
energy improvement across all target adsorbates, by an average of 0.8 eV. Overall,

https://arxiv.org/abs/2312.02308 our resultssuggest strong potential for Deep Reinforcement Learning applied t
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Open Catalyst Project
Very large DFT dataset

« OC20 and OC22 datasets by
Meta Al and Carnegie Mellon

Accelerating catalyst
discovery with Al

Catalysts play a key role in many of the chemical processes involved

1 . I I . I I I .
.3 million molecular relaxations
n n in converting renewable energy (e.g. wind or solar) to easily storable
fro m Ove r 2 6 O m I I I I O n D F I fuels -- an essential stepping stone in addressing climate change.
Conventional methods for catalyst discovery primarily rely on

physical experiments or com putationa | simulations usin g
i ctional Theory (DFT) -- both of which are quite difficult

" n Density Fun
Ca C u a I O S [} and time-consuming.
The en Catalyst P

o C h al I e n g e a n d I e ad e r b O a rd o T s catalysts that can drive these reactions

(>) Read the NRR case
* Current lead: ~0.3 eV MAE. O r ooy
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RL for catalysts exploration

Romain Lacombe

n(a | St? g)

Policy: materials traversal
* States: OC20 catalysts

* Actions: traverse the
materials space with
sparse rewards

Catalyst material Updated catalyst

r(S, 8)  f (E 4,41, ads)), )

Rewards: adsorption energy

* Offline from OC20

* Goal: bind more/less to
target adsorbates e.g H20O

Not knownfor all states! o
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Simplifying the problem

- Data set: OC20 adsorption energies All 560,181 catalysts

for (catalyst, adsorbate) pairs
- States: ~160,000 unary, binary and — B
ternary Com pou nds Of 55 elements random1222473 NiggH(W1oN)- mp-30811 NigW N*NH N2 H1 -0.162 2 0
(i g n O ri n g StO i C h iO m et ry) . random868163 CagoPgaH2C mp-28879 CagPg *CH2 C1H2 1515 1 2
’ ACtionS: StepS to traverse the random1694933 Tjo(:: :01: | mp-1198692 TjG: | *CHOH C1H2 01 —0.498 1 1
dataset Of materials. dom1248324 Al 2H(Pt,oC) -150 Al;Pt *CCH C2H -2.536 0

° Goals: targ ets for eaCh ad SO rbate random2225117 TcagCN mp-113 Tc *CN C1N1 -1.734 1 0
(St ro n g b i n d i n g/l OW e n e rgy VS - Wea k random698361 Fe,4SiaNO, mp-871 FeSi *NO2NO2 N2 04 4.310 1 1
b i n d i n g/h i g h e n e rg y) random1641067 Hf 40C020TcooHC, mp-866088 Hf,CoTc *CCH C2 H1 -1.250 2 2

¢ Rewa rd S are fu n Ct i O n S Of random1753170 ZrzgHoRhgoC20 mp-2626 ZrzRhg *CHCHO C2 H2 O1 -3.000 0 2
adsorption energy of catalysts for intomisooom  AeGughcn  mpmams A oowom.  comeor s : 1
target adsorbates. iossess Tapbgno  mpsosio e wowd newior ; 1
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Reinforcement learning setting
The math behind training.

Multi-objective Goal-conditioned Deep Q-Network
S: compounds

a: actions

g. goal vector (+1, or -1 for adsorbate /)
r: reward (f(Eags))

Bellman Equation for Q-learning: Evaluation metric A:
] 1
Q*@al|S,g) =r(al|S,g) + ymax (Q*(a 1.5, g)) A = ~ 2 — (EadS(Sl-)) Y; 2 — <EadS(Sj)>
“ i€final J€Einitial

Learn more: CS 224R
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Unary compounds
Navigating the Periodic Table.

H He
- 86 single element states B CNOFHNe
» S5actions: {_|«< ||| T} ..======

» Goal: strong binding (minimize Eags)

» Simple Q-learning reaches top-2 states
for ~95% of roll-outs.

* High performance agent: A = -5.9 eV.

55 elements in OC20
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ompounds: random edge traversal

|
Larger, sparser dataset, hard to navigate
CaNaTI
J J . Cl@sSc
| u@iCs
NERY Cusr NN@Ru CIRbSrCCSH@ CIMINTI
BiNSNSANS GalgbST HN@Rh CIN@Sc
NWY NSrWCuNSr : Au@uPd &B@G%dggfﬁ}%ﬁ!ﬂ(@r CICOHRbCTl(I;\SﬁRb

Insight: constrain states and actions to ?iil%%gm“mﬁ S g g
SR AtiaBREE NS Fagi 2 M8Bflxsc: _AspiznC %m jCIAIAS oK mmﬁﬁf&?cglsn
AN Elpde s . o ca

make DQN learning more tractable s el

Aggpt SCET & gege Bl
Only traverse known energy states.

CuKz_{Jgg%?% %/;2?4 Amjffés:es - CNaPt
Traverse subgraph with random edges.
Learn only 5 actions:

- <stop>

- <add> a random element

- <delete> element 1, 2, or 3.

High performance agent: A = 4.1 eV.

CuInY ‘"G"’
a‘ScYZn

‘QA

HIQPt

SN

(85515 v

Niganed/ TR b8
e CoSTans MO%S’% NbSW

o FoF
CrMoSQ&WS

Mags
i CmMoW
MoNbOs NifaV rTaV Y= AV

W
Moflela %cilr b

RuwWzZn HflaV Mn8bTc

CRBTi

3-hop ego graph of lowest energy state
for *OH2 adsorbate (SiC)

Stanford
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Multi-objective setting

Different targets for different adsorbates.

° Learn 6 objectives at Once! .............................................
- Increase Eags for some adsorbates e

- Decrease Eags for others
. Multi-objective DQN :  Motivation: could we

- Simultaneously improves adsorption energy . break linear scaling
in the desired direction by A = 0.8 eV on relationships?
average across all 6 adsorbates.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a N
at® Ny
....
L 4

Adsorbate 1: *CH2 2: *CH4  3: *N2 4. *NH3 5: *OH2 6: *OH
Objective Increase  Increase Increase @ Decrease Decrease Decrease
Initial state -2.2 -3.3 -1.8 -1.6 -1.9 -1.9

Exp (4): Baseline -2.2 -3.0 -1.5 -1.9 -3.9 -3.9

Exp (5): Sub-Sampling -2.3 -3.0 -1.6 -2.1 -3.8 -3.8
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Conclusions & Future work

RL for generalized inverse catalyst design Key References
|dentify promising catalysts for any combination of target adsorbates: 1] Zitnick et al.: “An Introduction to
_ Electrocatalyst Design using Machine
» In practice: conduct a large number of roll-outs. Learning for Renewable Energy Storage”,
] . _ _ 2020; arXiv:2010.09435.
* Most common terr_nlnal states are promising materials on which 2] Lan et al. "AdsorbML: Accelerating
to focus computational and experimental resources. Adsorption Energy Calculations with

Machine Learning." 2022;
arXiv:2211.16486 (2022).

= k [3] Materials Project, https://
Uture wor materialsproject.org

» Better handling of unknown energy states while traversing state space [4] Open Catalyst Project, https://

opencatalystproject.org

» Scalar goal-conditioning to find compounds with any given target Eags
» Actor-critic using AdsorbML 2], ML-based DFT for binding energies
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ML for DFT computations

Accelerating simulations

N computational ,
pj m at erl a I S www.nhature.com/ npjcompumats
ARTICLE O P E N '.) Check for updates

AdsorbML: a leap 1n efficiency for adsorption energy
calculations using generalizable machine learning potentials

Janice Lan"#, Aini Palizhati**, Muhammed Shuaibi'“, Brandon M. Wood (9", Brook Wander?, Abhishek Das (', Matt Uyttendaele',
C. Lawrence Zitnick' ® and Zachary W. Ulissi*>®

Adsorbate .
|
[ DFT :
'x Single-point A(IjEsorptlon
Surface > | minE : A1 _y  orRelaxation > nergy
Initial Configurations
econds SP mins. RX hrs.
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Materials generation

Generative Al for solid-state structures

Article

Scaling deep learning for materials discovery

https://doi.org/10.1038/s41586-023-06735-9

Received: 8 May 2023

Accepted: 10 October 2023

Published online: 29 November 2023

Open access

™ Check for updates

Romain Lacombe

Amil Merchant**, Simon Batzner'?, Samuel S. Schoenholz"?, Muratahan Aykol',
Gowoon Cheon? & Ekin Dogus Cubuk™**

Novel functional materials enable fundamental breakthroughs across technological
applications from clean energy to information processing' . From microchipsto
batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by
expensive trial-and-error approaches. Concurrently, deep-learning models for
language, vision and biology have showcased emergent predictive capabilities with
increasing data and computation’***. Here we show that graph networks trained at
scale canreachunprecedented levels of generalization, improving the efficiency of
materials discovery by an order of magnitude. Building on 48,000 stable crystals
identified in continuing studies® ", improved efficiency enables the discovery of

2.2 million structures below the current convex hull, many of which escaped previous
human chemical intuition. Our work represents an order-of-magnitude expansion in
stable materials known to humanity. Stable discoveries that are on the final convex
hull willbe made available to screen for technological applications, as we demonstrate
for layered materials and solid-electrolyte candidates. Of the stable structures, 736
have already been independently experimentally realized. The scale and diversity of
hundreds of millions of first-principles calculations also unlock modelling capabilities
for downstream applications, leading in particular to highly accurate and robust
learned interatomic potentials that can be used in condensed-phase molecular-
dynamics simulations and high-fidelity zero-shot prediction of ionic conductivity.
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“CoPilot for Research”

a Expert-designed __ Chain of thought reasoning loop Chemistry-informed
chemistry tools 1. thought 2. action sequence of actions
Augmenting large language models with chemistry tools reason, plan selecttool | 1. Google search

2. Retrosynthesis
3. Procedure prediction
4. Execution on robot

—>
Andres M. Bran'?*  Sam Cox®*  Oliver Schilter? Example input: Svnthesis of
Carlo Baldassari* Andrew D. White*  Philippe Schwaller'? Plan and execute D\éET without
! Laboratory of Artificial Chemical Intelligence (LIAC), ISIC, EPFL the synthesis of an - d
2National Centre of Competence in Research (NCCR) Catalysis, EPFL insect replellent. analyze ) use tool ! lftmant'
3 Department of Chemical Engineering, University of Rochester 4. observation 3. action input | 'hteraction.
4 Accelerated Discovery, IBM Research — Europe User-defined _ Autonomous
“Contributed equally. scientific tasks Autonomous interactlon with tools experimentation
andrew.white@rochester.edu .
o and the physical world (e.g. RoboRXN)
philippe.schwaller@eptl.ch b Molecule tools v General tools
« SMILES to Weight
« SMILES to Price
Abstract « SMILES to CAS

Over the last decades, excellent computational chemistry tools have been developed. o ) Slml_larlty
Integrating them into a single platform with enhanced accessibility could help reaching NN ) rOd'fé Mol
their full potential by overcoming steep learning curves. Recently, large-language models K * PN SOVPS
(LLMs) have shown strong performance in tasks across domains, but struggle with » Patent Check

« Literature Search
« Web Search

« Code interpreter
» Human expert

* RXN to Name

o

« Name to SMILES

chemistry-related problems. Moreover, these models lack access to external knowledge * RXN Predict NN— ?
sources, limiting their usefulness in scientific applications. In this study, we introduce - Safety Assessment N « Synth Plan K
ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic « Explosive Check » Synth Execute

synthesis, drug discovery, and materials design. By integrating 18 expert-designed

tools, ChemCrow augments the LLM performance in chemistry, and new capabilities Safety tools Reaction tools

emerge. Our agent autonomously planned and executed the syntheses of an insect
repellent, three organocatalysts, and guided the discovery of a novel chromophore. Our

evaluation, including both LLM and expert assessments, demonstrates ChemCrow’s Figure 1: Overview and toolset. a) An overview of the task-solving process. Using a variety of chemistry-

effectiveness in automating a diverse set of chemical tasks. Surprisingly, we find that related packages and software, a set of tools is created. These tools and a user input are then given to an
GPT-4 as an evaluator cannot distinguish between clearly wrong GPT-4 completions and LLM. The LLM then proceeds through an automatic, iterative chain-of-thought process, deciding on its
Chemcrow’s performance. Our work not only aids expert chemists and lowers barriers path, choice of tools, and inputs before coming to a final answer. The example shows the synthesis of
for non-experts, but also fosters scientific advancement by bridging the gap between . . . ) .

experimental and computational chemistry. Publicly available code can be found at DEET, a common insect repellent. b) Toolsets implemented in ChemCrow: reaction, molecule, safety,
https://github.com/ur-whitelab/chemcrow-public. search, and standard tools.
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Thank you!

Questions?
* Link to papers: * Follow up questions?
https.//arxiv.org/abs/2307.12996 rlacombe@stanford.edu

https://arxiv.org/abs/2312.02308
 Please get in touch!
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