Al beyond the Hype: Applications to ChemE

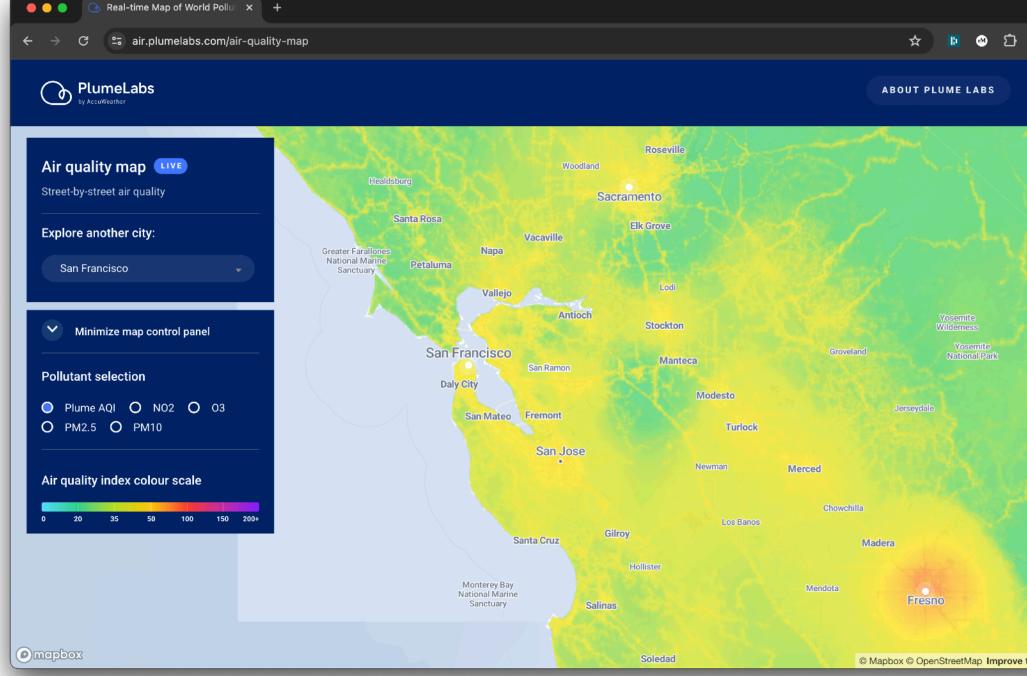
Romain Lacombe rlacombe@stanford.edu

Romain Lacombe

About me

- Undergraduate in Physics and Math (France) then MS Engineering Systems at MIT on climate economics (carbon markets and refineries)
- Climate technology entrepreneur (Plume) Labs, acq. by AccuWeather)
- MS ChemEng HCP candidate with a focus on AI for chemistry.
- Goal: build better materials/processes to help decarbonize at scale.

Romain Lacombe



Outline

- Al crash course
- Extracting molecular properties from natural language
- Discovering catalysts with reinforcement learning
- Conclusion: new frontiers in AI for materials

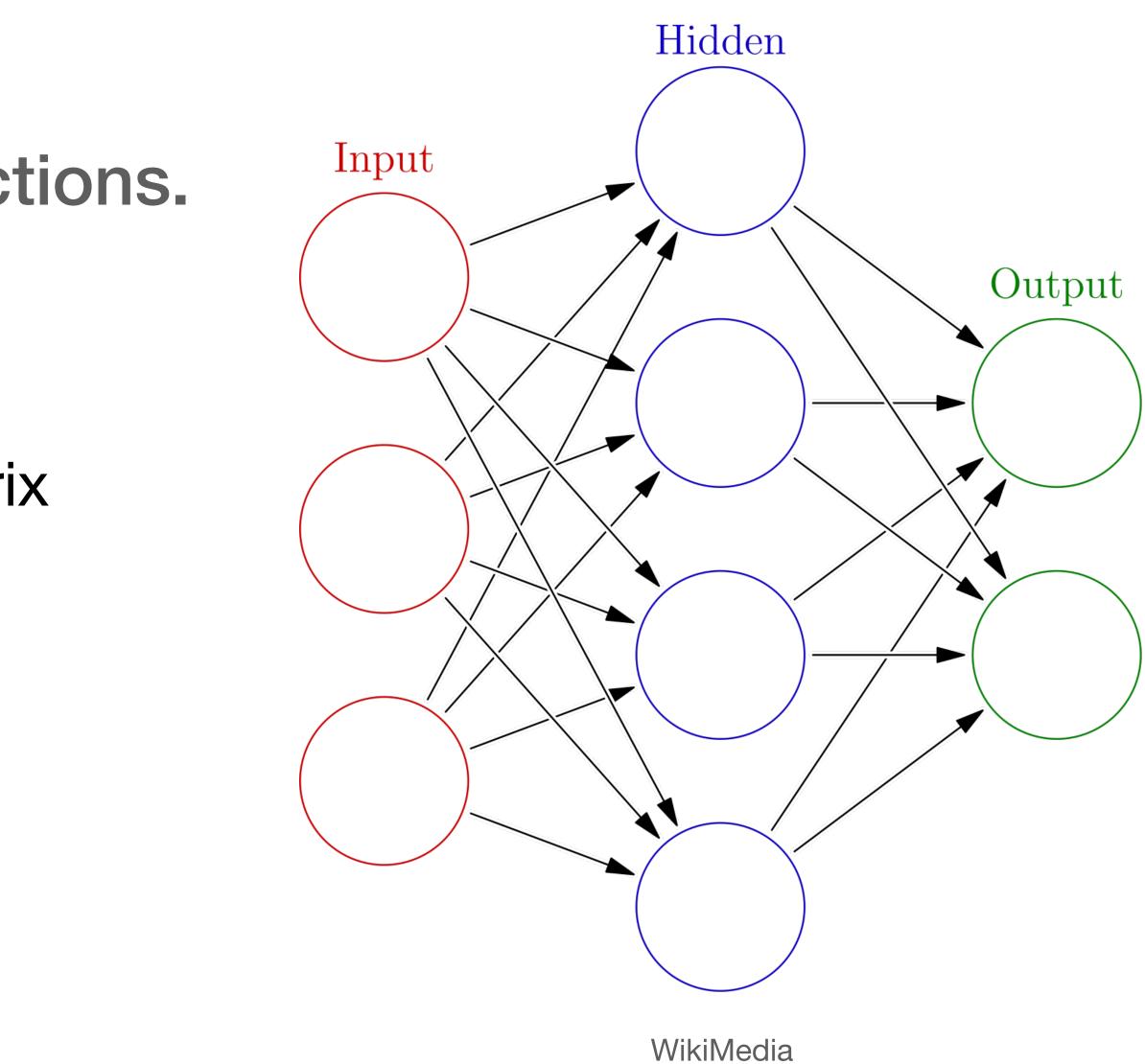
An Al Crash Course

Neural networks They're just (very) complex functions.

- Inspired by biological neurons
- Activations: multiply inputs by matrix weights + apply <u>non-linearities</u>
- Universal Approximation Theorem (Cybenko, 1989)
- How to find the right weights? Learn by gradient descent!

Learn more: CS 230

Romain Lacombe



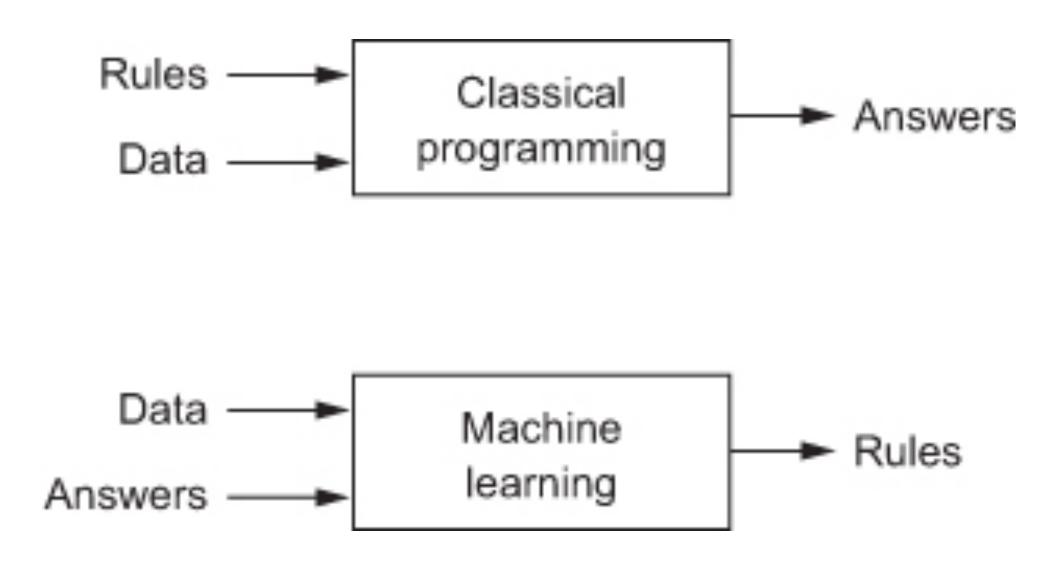
Why all the hype? Because these ideas finally work!

- First neural networks conceptualized in the 1950s: intractable to train. Started working well c. 2012: large networks learning from large datasets.
- 2010s-2020s: Deep Learning Era
- "Learning": don't program rules, learn them from the data
- Deep: represent these functions as large neural networks ("deep" = large number of hidden layers)

Learn more: CS 230

Romain Lacombe

Paradigm shift: learning from data Enabled by GPUs and data scale

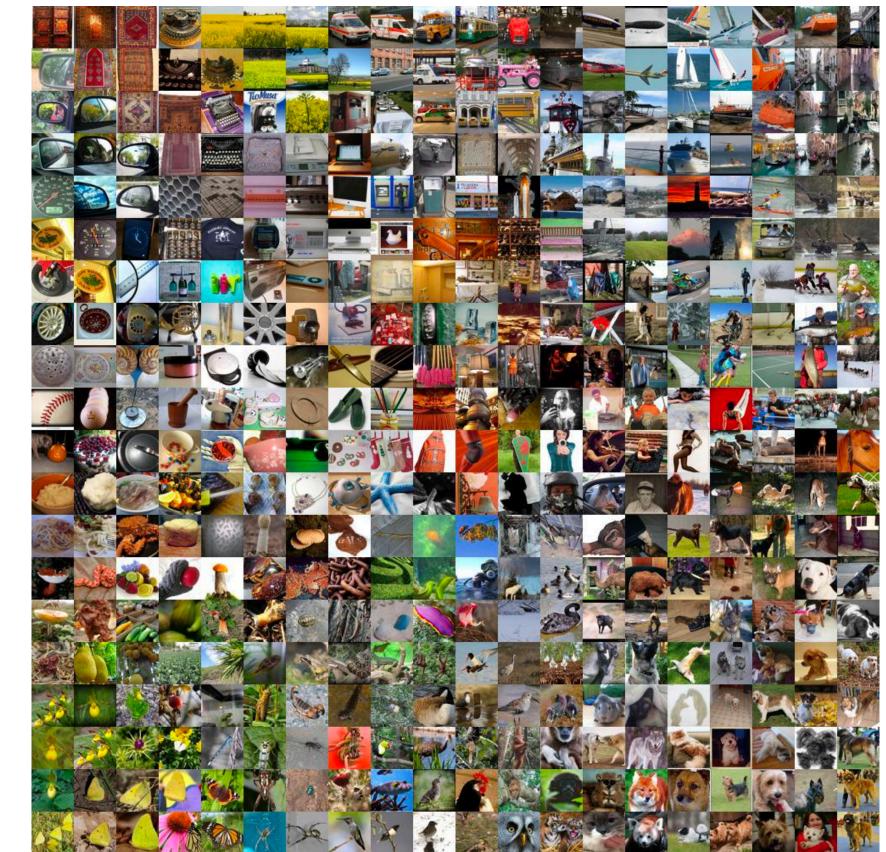


Source: François Cholet, "Deep Learning with Python"

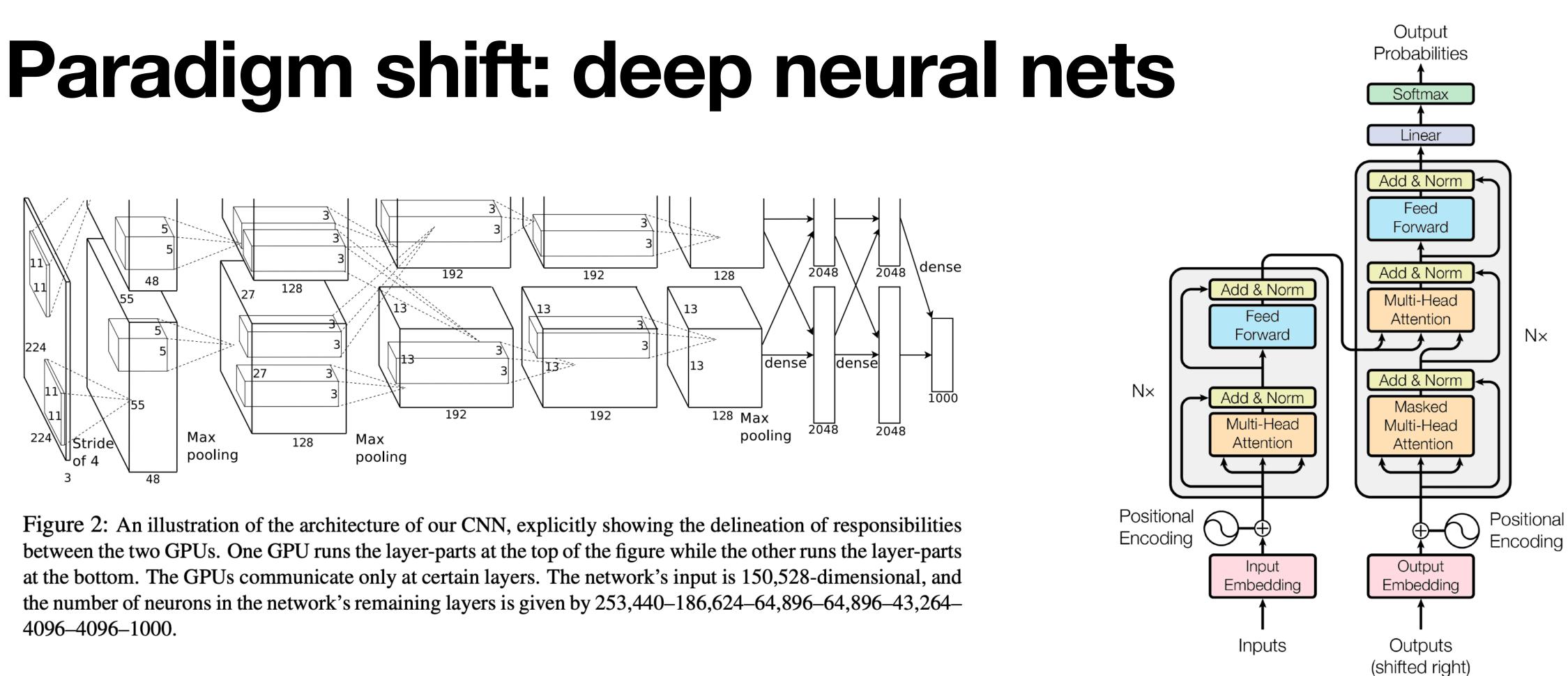
Learn more: CS 229

Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024



Source: ImageNet Large Scale Visual Recognition Challenge



Krizhevsky et al., 2012, ImageNet Classification with **Deep Convolutional Neural Networks**

Learn more: CS 231N

Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

Vaswani et al., 2017, Attention Is All You Need

Learn more: CS 224N & CS 224U

Flavors of learning Different recipes, same neural nets

- Supervised learning: learn to match a value/label
- Generative learning: learn to generate an object Ex: AA sequence \rightarrow 3d structure of a protein (AlphaFold)
- **Reinforcement learning:** learn through play Ex: play millions of games \rightarrow beat humans at Go (AlphaGo)
- Contrastive learning: learn to match/contrast samples Ex: several face photographs \rightarrow are they the same person?

Romain Lacombe

Learn more: CS 230 Ex: classification (image \rightarrow dog or cat?), regression (molecule \rightarrow solubility?)

Learn more: CS 236 & CS 279

Learn more: CS 224R

Learn more: CS 224W

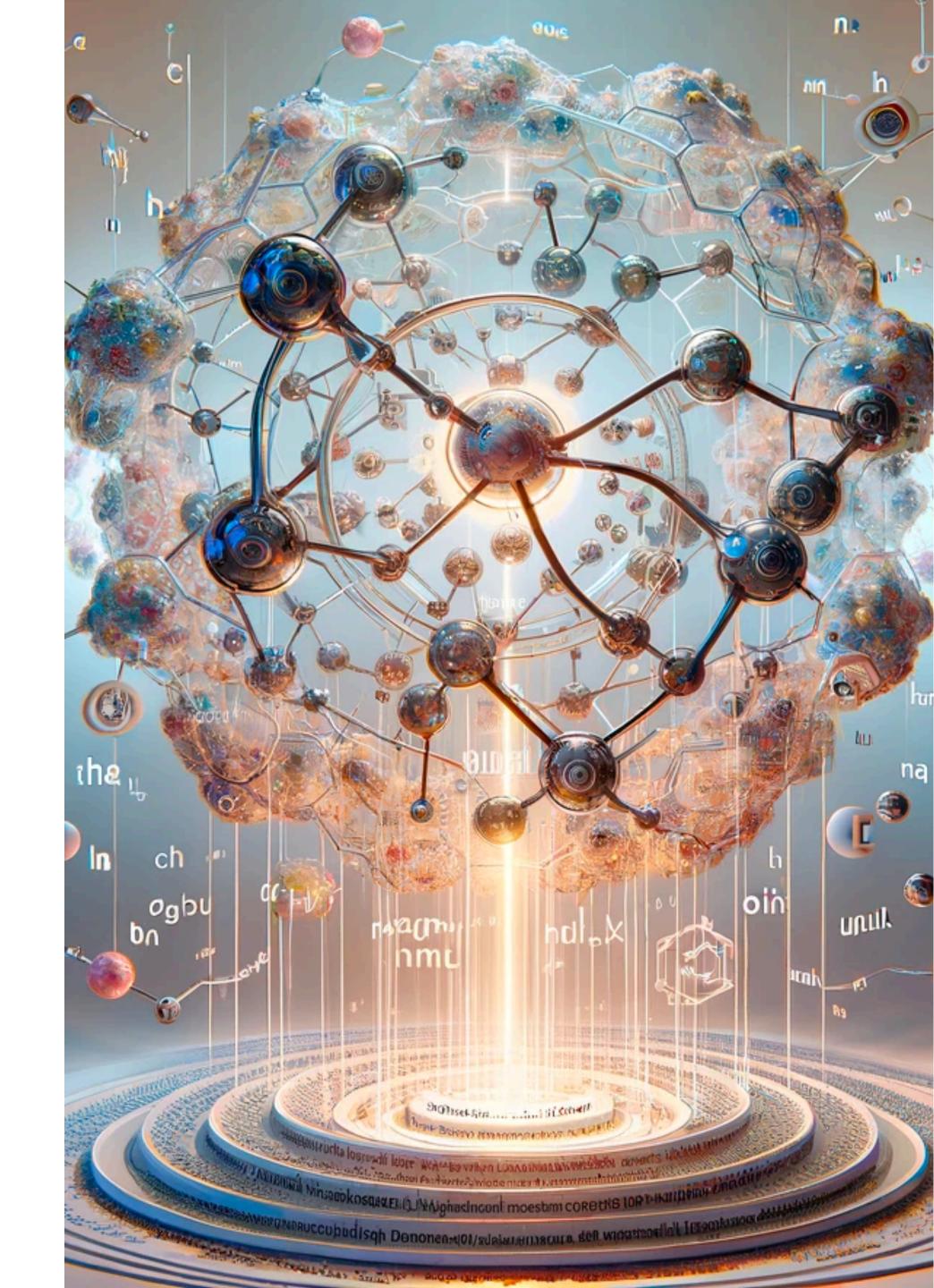
Why is this relevant? **Two examples of ChemE applications**

- Molecular properties prediction: learn to predict properties of an organic molecule given only its 2-d graph structure. ACS Fall 2023 AI for Organic Chemistry workshop
- Catalyst discovery: explore large spaces of possible metal catalysts fitting a target adsorption energies profile. NeurIPS 2023 Accelerated Materials Discovery workshop

Romain Lacombe

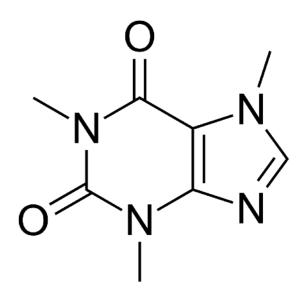
Extracting molecular properties from natural language

https://arxiv.org/abs/2307.12996

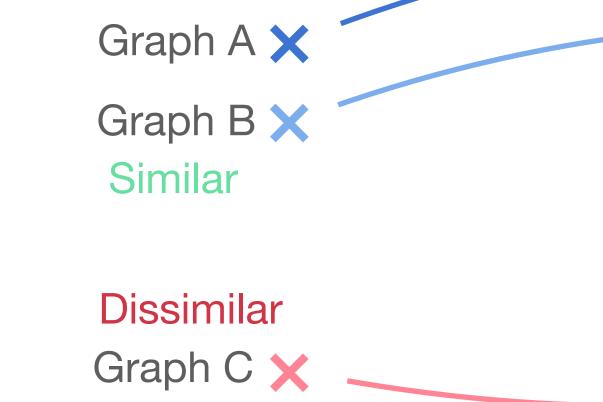


Contrastive learning

- GNNs can be trained to learn effective representations through contrastive learning:



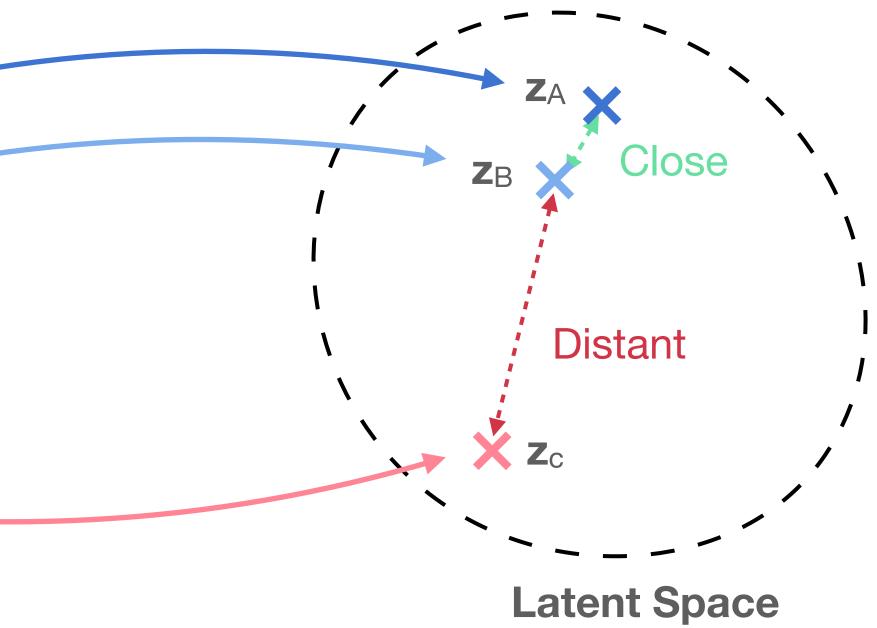
Molecular Graphs



Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

Tasks in ML for chemistry require deep molecular graph representations



Can we learn directly from scientific papers? Treasure trove of collective knowledge now accessible.

Extracting Molecular Properties from Natural Language with Multimodal Contrastive Learning

Romain Lacombe¹ Andrew Gaut¹ Jeff He¹ David Lüdeke¹ Kateryna Pistunova¹

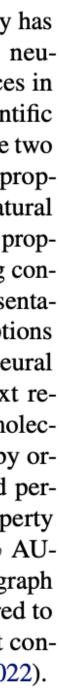
ACS Fall 2023 AI for Organic Chemistry workshop https://arxiv.org/abs/2307.12996

Romain Lacombe

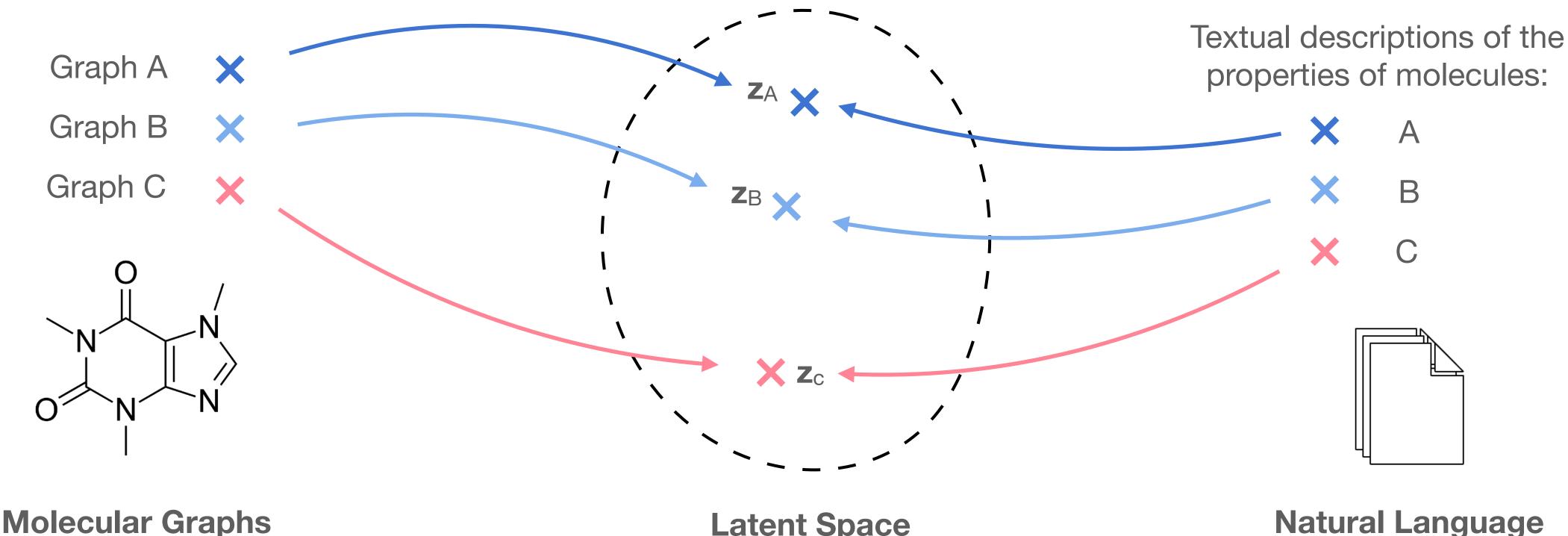
Presentation to Cargnello Group | Jan 12, 2024

Abstract

Deep learning in computational biochemistry has traditionally focused on molecular graphs neural representations; however, recent advances in language models highlight how much scientific knowledge is encoded in text. To bridge these two modalities, we investigate how molecular property information can be transferred from natural language to graph representations. We study property prediction performance gains after using contrastive learning to align neural graph representations with representations of textual descriptions of their characteristics. We implement neural relevance scoring strategies to improve text retrieval, introduce a novel chemically-valid molecular graph augmentation strategy inspired by organic reactions, and demonstrate improved performance on downstream MoleculeNet property classification tasks. We achieve a +4.26% AU-ROC gain versus models pre-trained on the graph modality alone, and a +1.54% gain compared to the recently proposed molecular graph/text contrastively trained MoMu model (Su et al., 2022).



Align graph and text latent representations Using contrastive learning.



Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

Latent Space Do aligned representations improve property predictions? **Natural Language**

Aligning graph and text representations Using contrastive learning.



/arxiv.org/abs/2209.05481

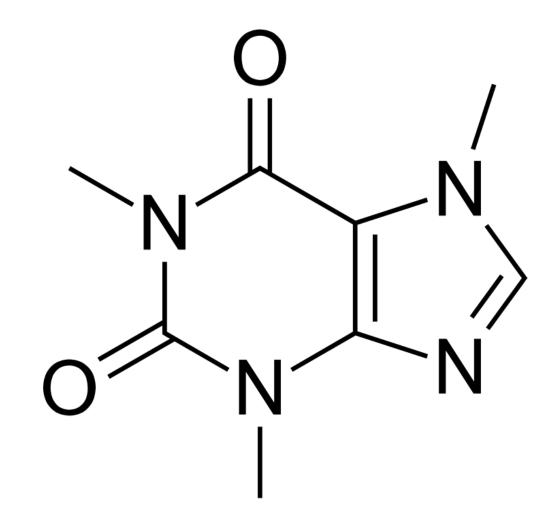
Romain Lacombe

Could we generate molecules from text?

Text prompt ('make me coffee')

Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024



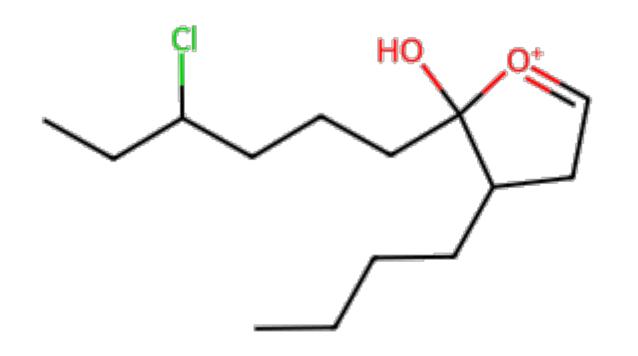
Molecular graph (Caffeine 🔊)

Answer: yes! But not very well.

Prompt

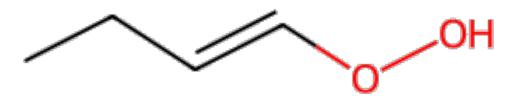
"This molecule has a hydroxyl group and a carbonyl group"

Generation



Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024



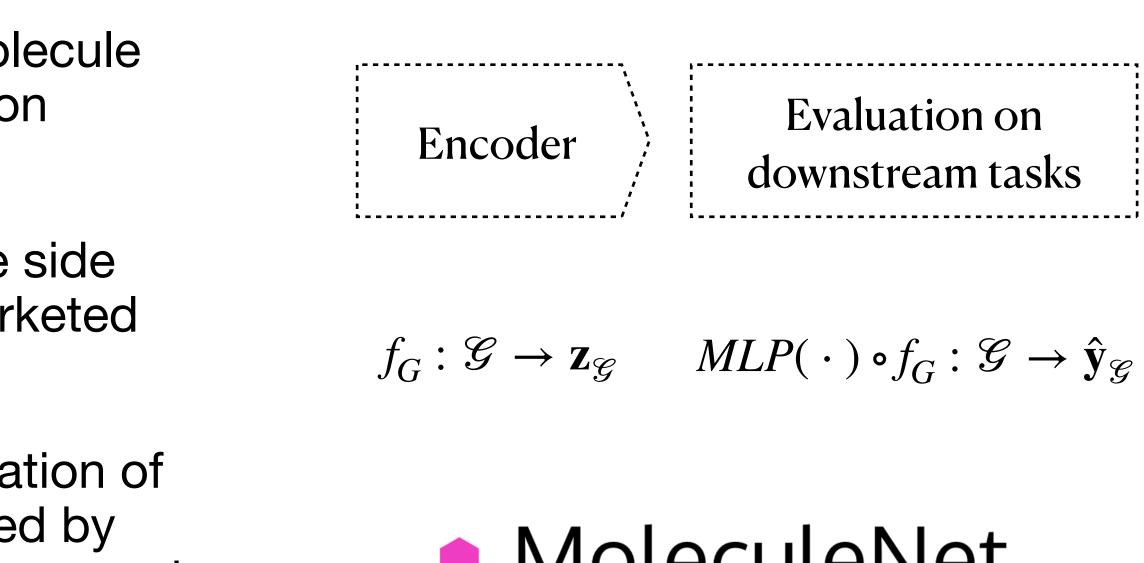
"This molecule is hazardous for health"

Experiment: evaluation MoleculeNet benchmark.

Evaluate graph representations on property prediction tasks (MoleculeNet)

- **BACE**: inhibitors of a human enzyme involved in Alzheimer.
- **BBBP:** blood-brain barrier penetration by small molecules.
- **Clintox:** classification of drugs approved/rejected by the FDA for toxicity.

- **MUV:** virtual molecule screening built on PubChem.
- **SIDER:** adverse side reactions of marketed drugs.
- **Tox21:** classification of toxicity measured by biological reactions and stress response.
- ToxCast: 600 tasks linked to in vitro toxicology data.



MoleculeNet

Results

	Experiment	BACE	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV
Graph only	Graph only pre-training	70	65.8	74	63.4	57.3	58	71.8
	Baseline (<i>MoMu</i>)	70.31 ±3.67	68.04 ±1.67	74.6 ±0.68	63.27 ±0.53	59.39 ±0.51	61.09 ±1.1	75.66 ±0.55
	Baseline (pruned)	71.14 ±1.93	67.86 ±2.1	74.77 ±0.37	62.71 ±1.3	59.31 ±0.72	61.17 ±1.39	75.18 ±1.06
Graph	Baseline (pruned)	71.14 ± 1.93	67.80 ± 2.1	74.77 ± 0.37	62.71 ± 1.3	59.31 ± 0.72	59.99 ± 1.73	73.18 ± 1.00
+ natural	Baseline (relevant)	72.13 ±0.47	68.73 ± 2.21	74.85 ±0.3	62.47 ± 0.66	60.05 ±0.7		74.47 ±0.95
language text	Mean cosine similarity (best)	72.6 ±2.77	68.48 ±1.68	74.54 ±0.7	63.37 ±0.72	60.07 ±0.41	61.36 ±3.36	75.07 ±1.13
	Max cosine similarity (best)	72.71 ±0.59	68.27 ±2.35	74.77 ±0.45	63.73 ±0.59	60.14 ±1.05	62.28 ±1.61	75.15 ±1.07
	Sentence cosine similarity (best)	72.05 ±0.52	68.11 ±2.5	74.94 ±0.79	63.6 ±0.29	59.84 ±0.24	61.47 ±2	74.61 ±0.27

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each MoleculeNet dataset, reported for each pre-training experiment and baseline model/dataset.

Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

Stanford

Experiment: Can Al learn from chemistry?

GraphCL (You et al. 2020) contrastive pre-training uses random node dropping and random subgraphs:

Table 1: Overview of data augmentations for graphs.

Data augmentation	Туре
Node dropping	Nodes, edges
Edge perturbation	Edges
Attribute masking	Nodes
Subgraph	Nodes, edges

You et al. 2020: https://arxiv.org/abs/2010.13902

Romain Lacombe

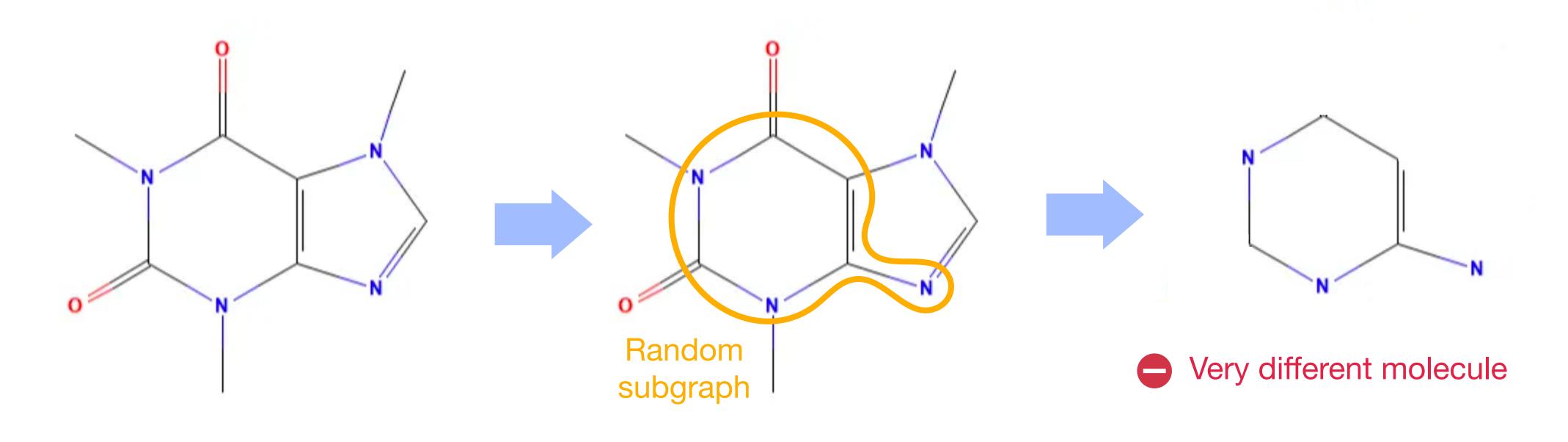
Presentation to Cargnello Group | Jan 12, 2024

Underlying Prior Vertex missing does not alter semantics. Semantic robustness against connectivity variations. Semantic robustness against losing partial attributes. Local structure can hint the full semantics.

No guarantee that augmented graphs are valid molecules!

Random graph augmentations can lead to strong contrasts in chemical space

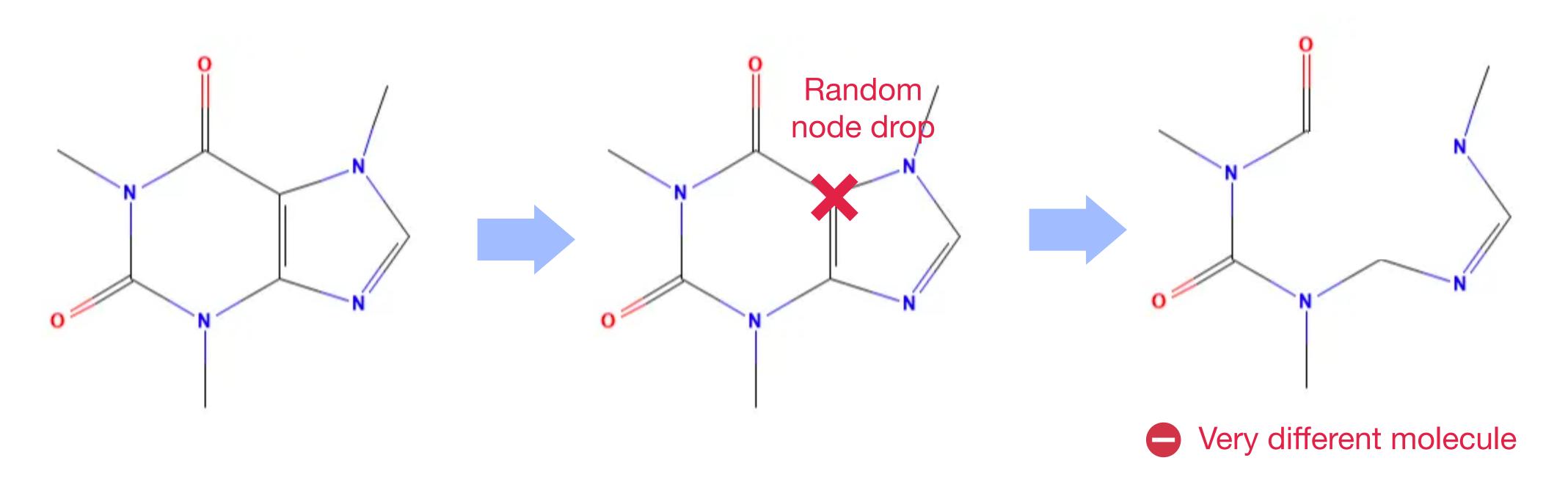
• *Ex:* random subgraph.



Romain Lacombe

Random graph augmentations can lead to strong contrasts in chemical space

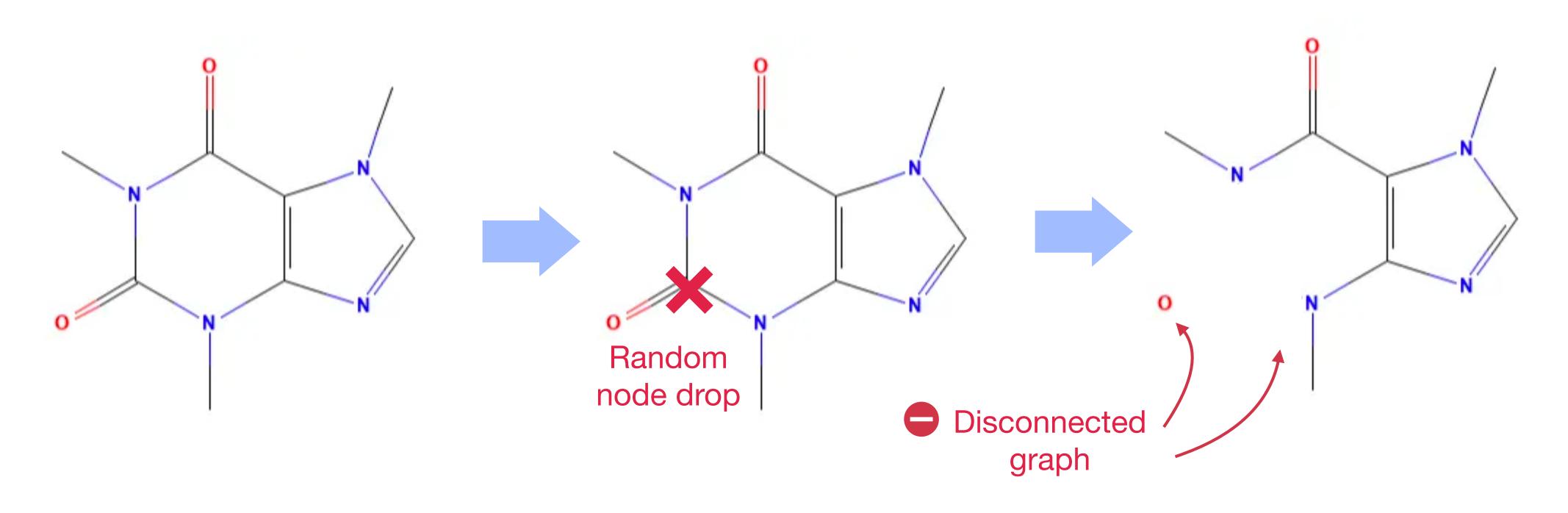
• Ex: drop random atom.



Romain Lacombe

Random graph augmentations can lead to invalid molecules

• *Ex:* drop random atom.



Romain Lacombe

What if we used organic reactions as graph augmentations?

Idea: use addition/elimination organic reactions! Transform initial graph into better behaved augmentations

> $R-H+CH_4$ $R-H + NH_3$

Initial molecule

Romain Lacombe

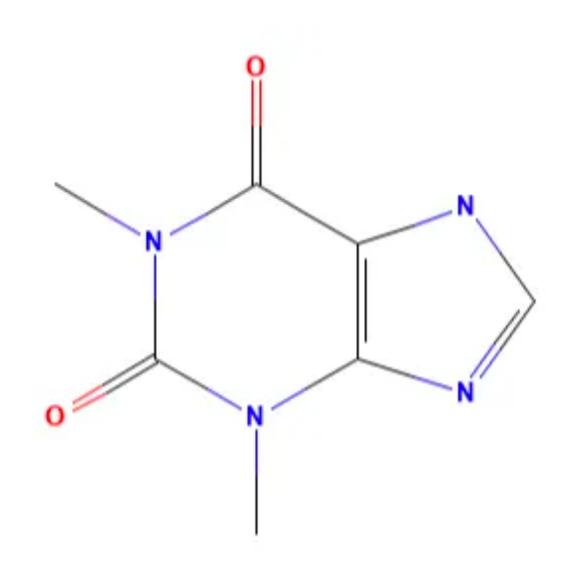
$$R - CH_3 + H_2$$

$$R - NH_2 + H_2$$

$$Valid augmented molecules$$

What if we used organic reactions as graph augmentations?

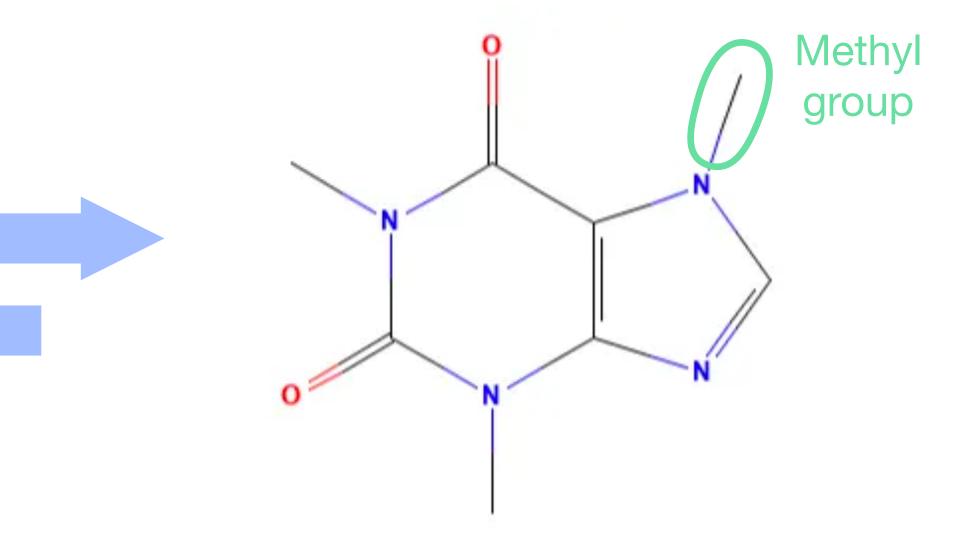
• *Ex:* methylation/de-methylation.



Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

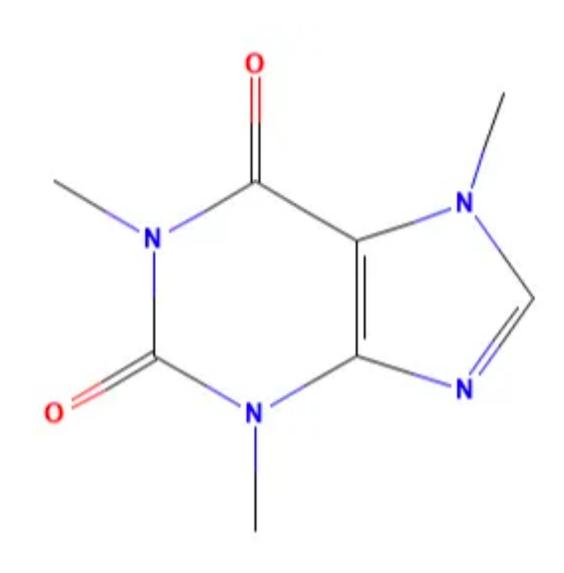
$\mathrm{R-H} + \mathrm{CH}_4 \Longrightarrow \mathrm{R-CH}_3 + \mathrm{H}_2$



Valid + close to original molecule

What if we used organic reactions as graph augmentations?

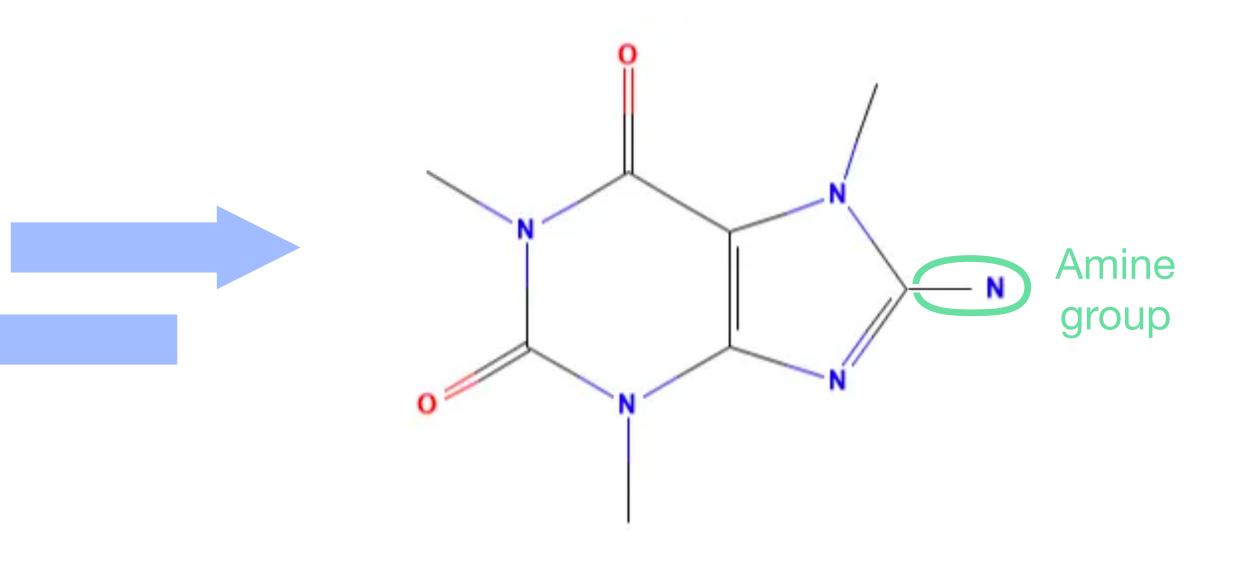
• *Ex:* amination/de-amination.



Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

$\mathrm{R-H} + \mathrm{NH}_3 \Longrightarrow \mathrm{R-NH}_2 + \mathrm{H}_2$



Valid + close to original molecule

Results

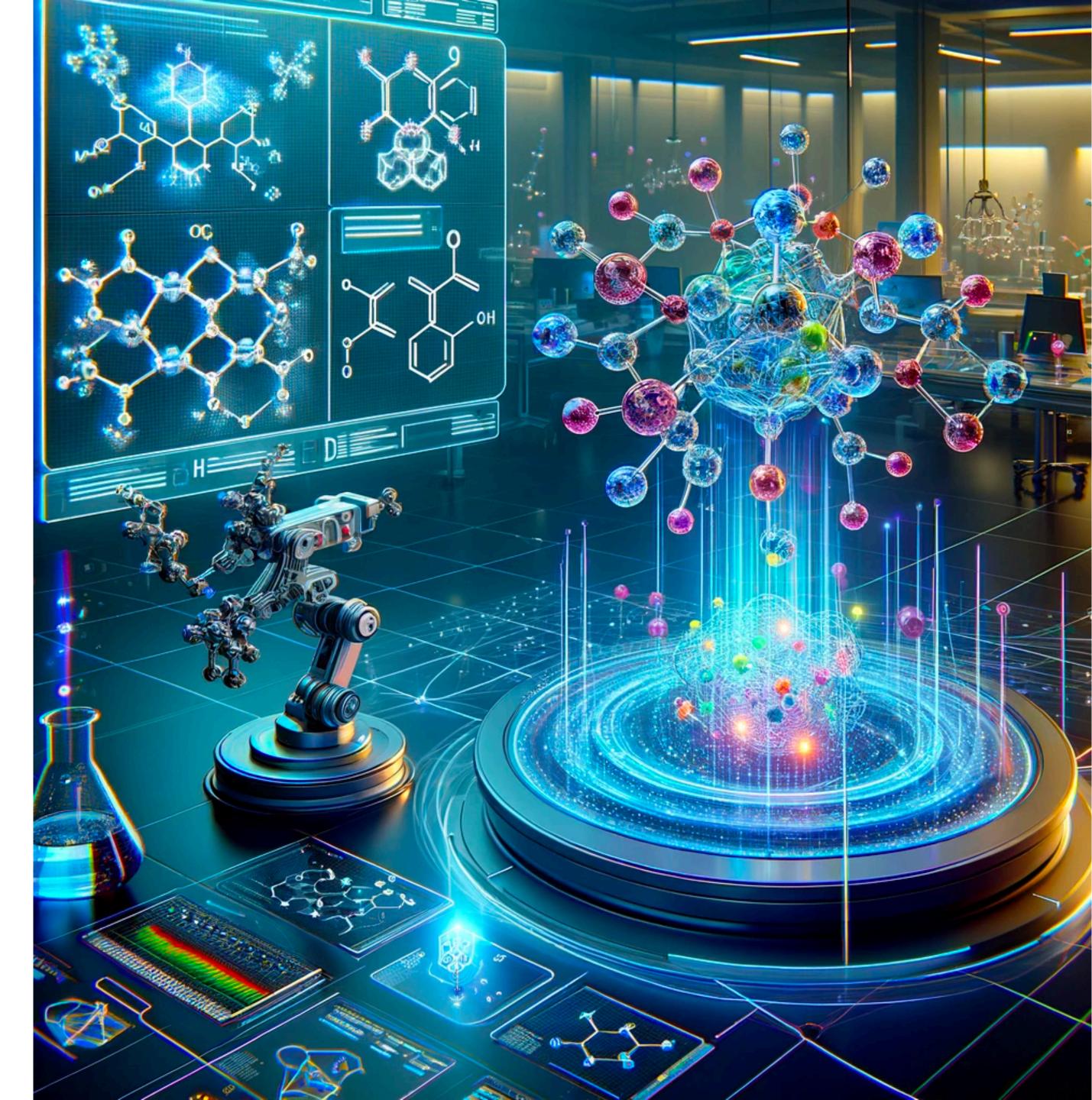
	Experiment	BACE	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV
Graph only	Graph only pre-training	70	65.8	74	63.4	57.3	58	71.8
Graph	Baseline (<i>MoMu</i>) Baseline (pruned) Baseline (relevant)	70.31 ±3.67 71.14 ±1.93 72.13 ±0.47	68.04 ±1.67 67.86 ±2.1 68.73 ±2.21	74.6 ±0.68 74.77 ±0.37 74.85 ±0.3	63.27 ±0.53 62.71 ±1.3 62.47 ±0.66	59.39 ±0.51 59.31 ±0.72 60.05 ±0.7	61.09 ±1.1 61.17 ±1.39 59.99 ±1.73	75.66 ±0.55 75.18 ±1.06 74.47 ±0.95
+ natural		70 (+0 77	(0.40.1.(0	7454.07	(2.27.10.70		(1.26.12.26	75.07 + 1.12
language text	Mean cosine similarity (best) Max cosine similarity (best) Sentence cosine similarity (best)	72.6 ±2.77 72.71 ±0.59 72.05 ±0.52	68.48 ±1.68 68.27 ±2.35 68.11 ±2.5	74.54 ±0.7 74.77 ±0.45 74.94 ±0.79	63.37 ±0.72 63.73 ±0.59 63.6 ±0.29	60.07 ±0.41 60.14 ±1.05 59.84 ±0.24	61.36 ±3.36 62.28 ±1.61 61.47 ±2	75.07 ±1.13 75.15 ±1.07 74.61 ±0.27
	Sentence cosine similarity (best) Principled graph augmentation	71.45 ±2.24	69.23 ±0.93	74.31 ±0.36	62.61 ±0.49	61.33 ±0.69	58.97 ±2.22	75.03 ±1.52

Table 1. Results of our experiments: AUROC classifier task performance for multiple random seeds for each MoleculeNet dataset, reported for each pre-training experiment and baseline model/dataset.

Romain Lacombe

Catalysts discovery with reinforcement learning

https://arxiv.org/abs/2312.02308



RL for catalysts discovery Al can master Go. What about materials?

AdsorbRL: Deep Multi-Objective Reinforcement Learning for Inverse Catalysts Design

Romain Lacombe Stanford University

Lucas Hendren Stanford University

Khalid El-Awady Stanford University

{rlacombe, hendren, kae}@stanford.edu

NeurIPS 2023 AI for Accelerated Materials Design workshop https://arxiv.org/abs/2312.02308

Romain Lacombe

Abstract

A central challenge of the clean energy transition is the development of catalysts for low-emissions technologies. Recent advances in Machine Learning for quantum chemistry drastically accelerate the computation of catalytic activity descriptors such as adsorption energies. Here we introduce AdsorbRL, a Deep Reinforcement Learning agent aiming to identify potential catalysts given a multi-objective binding energy target, trained using offline learning on the Open Catalyst 2020 and Materials Project data sets. We experiment with Deep Q-Network agents to traverse the space of all ~160,000 possible unary, binary and ternary compounds of 55 chemical elements, with very sparse rewards based on adsorption energy known for only between 2,000 and 3,000 catalysts per adsorbate. To constrain the actions space, we introduce Random Edge Traversal and train a single-objective DQN agent on the known states subgraph, which we find strengthens target binding energy by an average of 4.1 eV. We extend this approach to multi-objective, goal-conditioned learning, and train a DQN agent to identify materials with the highest (respectively lowest) adsorption energies for multiple simultaneous target adsorbates. We experiment with Objective Sub-Sampling, a novel training scheme aimed at encouraging exploration in the multi-objective setup, and demonstrate simultaneous adsorption energy improvement across all target adsorbates, by an average of 0.8 eV. Overall, our results suggest strong potential for Deep Reinforcement Learning applied to the inverse catalysts design problem.

Open Catalyst Project Very large DFT dataset

- OC20 and OC22 datasets by Meta AI and Carnegie Mellon
- 1.3 million molecular relaxations from over 260 million DFT calculations.
- Challenge and leaderboard
- Current lead: ~0.3 eV MAE.

Romain Lacombe

× + Sopen-catalyst.metademolab.com

Open Catalys

🛧 🛛 🖪 🐵 🎦 🖌 🖬 🔮

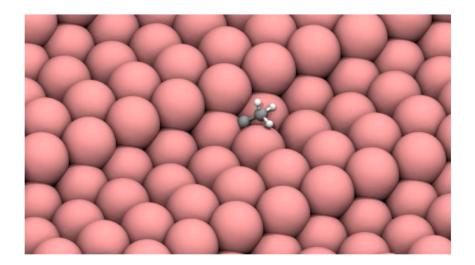
Accelerating catalyst discovery with AI

Catalysts play a key role in many of the chemical processes involved in converting renewable energy (e.g. wind or solar) to easily storable fuels -- an essential stepping stone in addressing climate change. Conventional methods for catalyst discovery primarily rely on physical experiments or computational simulations using Density Functional Theory (DFT) -- both of which are guite difficult and time-consuming.

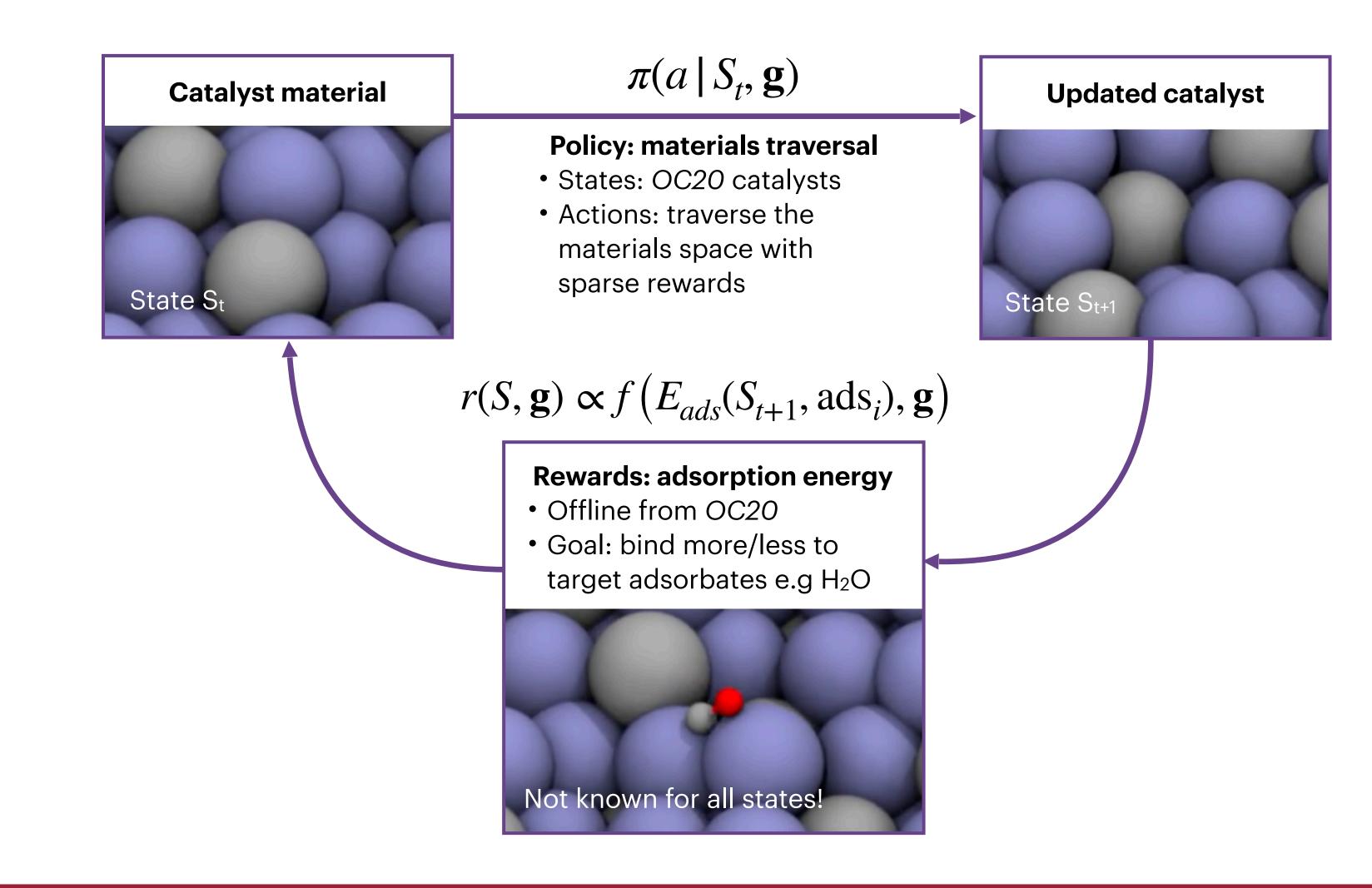
The Open Catalyst Project (OCP) is a collaborative research effort between Fundamental AI Research (FAIR) at Meta AI and Carnegie Mellon University's (CMU) Department of Chemical Engineering whose aim is to use machine learning (ML) to accelerate the search for low-cost catalysts that can drive these reactions.

(\rightarrow) Try the demo

- (\rightarrow) Read the NRR case study
- (\rightarrow) Read the ORR case study



RL for catalysts exploration



Romain Lacombe

Simplifying the problem

- Data set: OC20 adsorption energies for (catalyst, adsorbate) pairs
- States: ~160,000 unary, binary and ternary compounds of 55 elements (ignoring stoichiometry).
- Actions: steps to traverse the dataset of materials.
- **Goals:** targets for each adsorbate (strong binding/low energy vs. weak binding/high energy)
- **Rewards** are functions of \bullet adsorption energy of catalysts for target adsorbates.

All 560,181 c Showing 1-15	catalysts							Columns 🗸
Catalyst ID	Formula	Bulk Material ID	Bulk Formula	Adsorbate Smiles	Adsorbate IUPAC Formula	Adsorption Energy	h	k
random1222473	Ni ₉₆ H(W ₁₂ N) ₂	mp-30811	Ni ₄ W	*N*NH	N2 H1	-0.162	2	0
random868163	Ca ₄₀ P ₆₄ H ₂ C	mp-28879	Ca ₅ P ₈	*CH2	C1 H2	-1.515	1	2
random666609	$Y_{40}In_{32}H_{4}Pd_{16}C_{2}O$	mp-980936	$Y_5(In_2Pd)_2$	*CHCH2OH	C2 H4 O1	-1.359	2	1
random1694933	Ti ₈₀ Ge ₆₄ H ₂ CO	mp-1198692	Ti ₅ Ge ₄	*СНОН	C1 H2 O1	-0.498	1	1
random1248324	Al ₂₄ H(Pt ₂₀ C) ₂	mp-1501	Al ₃ Pt ₅	*CCH	C2 H1	-2.536	0	1
random2225117	Tc ₄₈ CN	mp-113	Тс	*CN	C1 N1	-1.734	1	0
random698361	Fe ₂₄ Si ₂₄ NO ₂	mp-871	FeSi	*NO2NO2	N2 04	4.310	1	1
random1641067	Hf ₄₀ Co ₂₀ Tc ₂₀ HC ₂	mp-866088	Hf ₂ CoTc	*CCH	C2 H1	-1.250	2	2
random1753170	Zr ₃₆ H ₂ Rh ₆₀ C ₂ O	mp-2626	$\rm Zr_3Rh_5$	*CHCHO	C2 H2 O1	-3.000	0	2
random2399091	Al ₈ Cu ₃₂ H ₂ CO	mp-1182885	AlCu ₄	*COHCH2	C2 H4 O2	-0.887	2	1
random736686	Ti ₃₂ HPd ₄₈ N ₂ O	mp-30840	Ti ₂ Pd ₃	*NONH	N2 H1 O1	2.704	0	1

Reinforcement learning setting The math behind training.

Multi-objective Goal-conditioned Deep Q-Network

- S: compounds
- a: actions
- **g**: goal vector (+1, or -1 for adsorbate *i*)
- r: reward $(f(E_{ads}))$

Bellman Equation for Q-learning: $\mathbf{Q}^*(a \mid S, \mathbf{g}) = r(a \mid S, \mathbf{g}) + \gamma \max\left(\mathbf{Q}^*(a \mid S', \mathbf{g})\right)$

Learn more: CS 224R

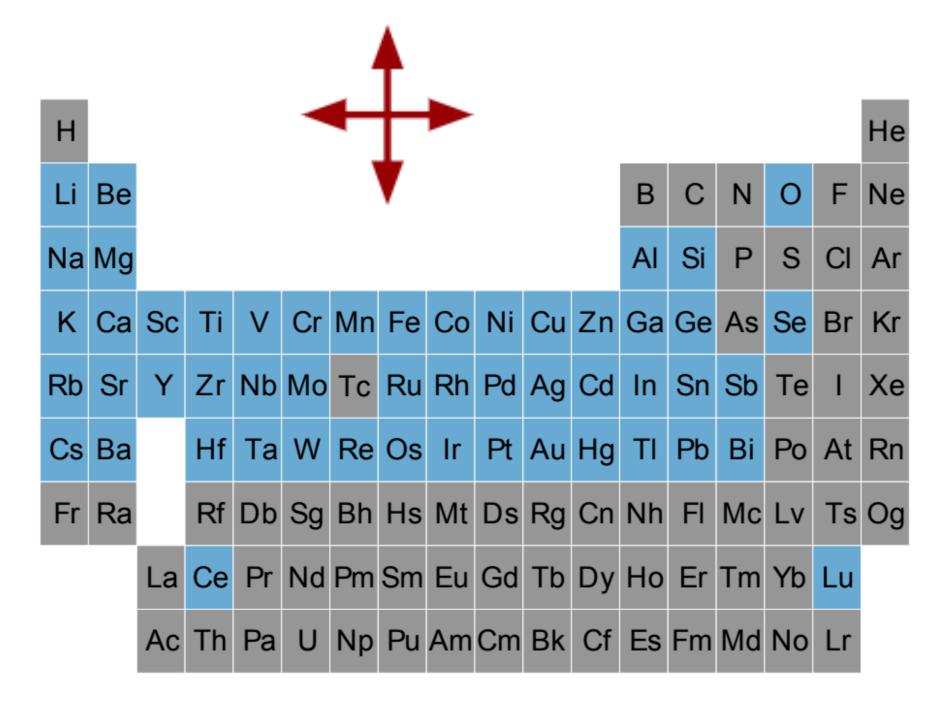
Romain Lacombe

Evaluation metric
$$\Delta$$
:

$$\Delta = \frac{1}{N} \sum_{i \in \text{final}} - \left(E_{ads}(S_i) \right) - \frac{1}{N} \sum_{j \in \text{initial}} - \left(E_{ads}(S_j) \right)$$

Unary compounds Navigating the Periodic Table.

- 86 single element states
- 5 actions: $\{ | \leftarrow | \rightarrow | \downarrow | \uparrow \}$
- Goal: strong binding (minimize Eads)
- Simple Q-learning reaches top-2 states for ~95% of roll-outs.
- High performance agent: $\Delta = -5.9 \text{ eV}$.

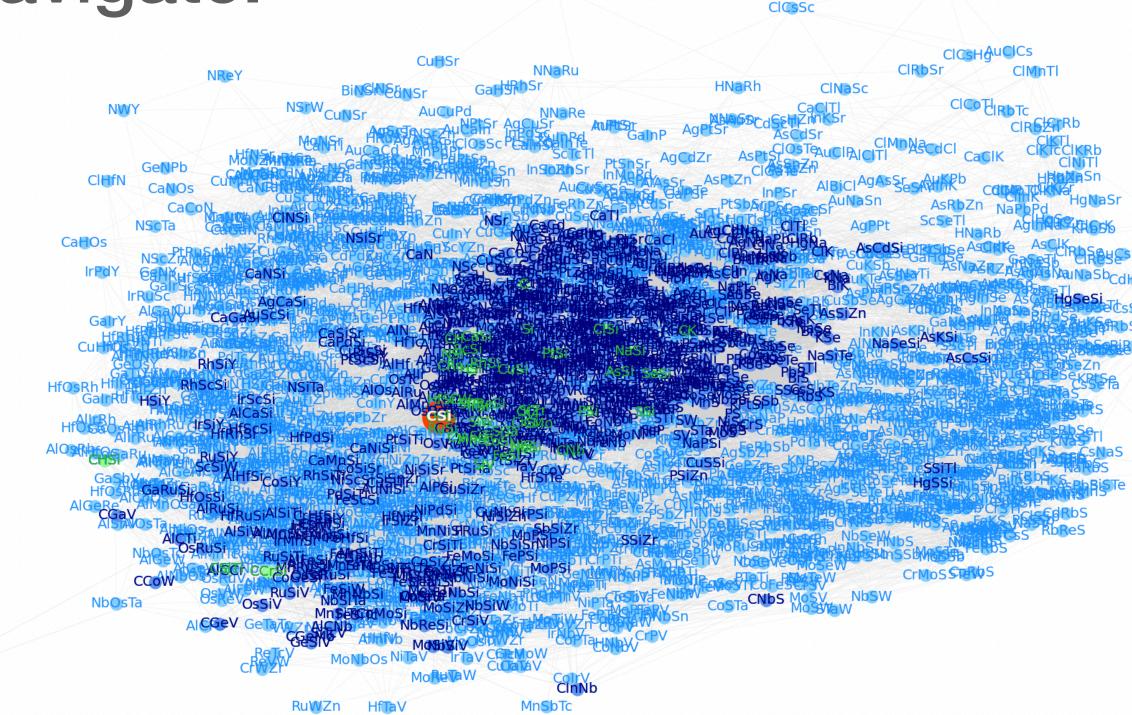


55 elements in OC20

Compounds: random edge traversal Larger, sparser dataset, hard to navigate.

- Insight: constrain states and actions to make DQN learning more tractable
- Only traverse known energy states.
- Traverse subgraph with random edges.
 Learn only 5 actions:
 - <stop>
 - <add> a random element
 - <delete> element 1, 2, or 3.
- High performance agent: $\Delta = 4.1 \text{ eV}$.

Romain Lacombe



3-hop ego graph of lowest energy state for *OH₂ adsorbate (SiC)

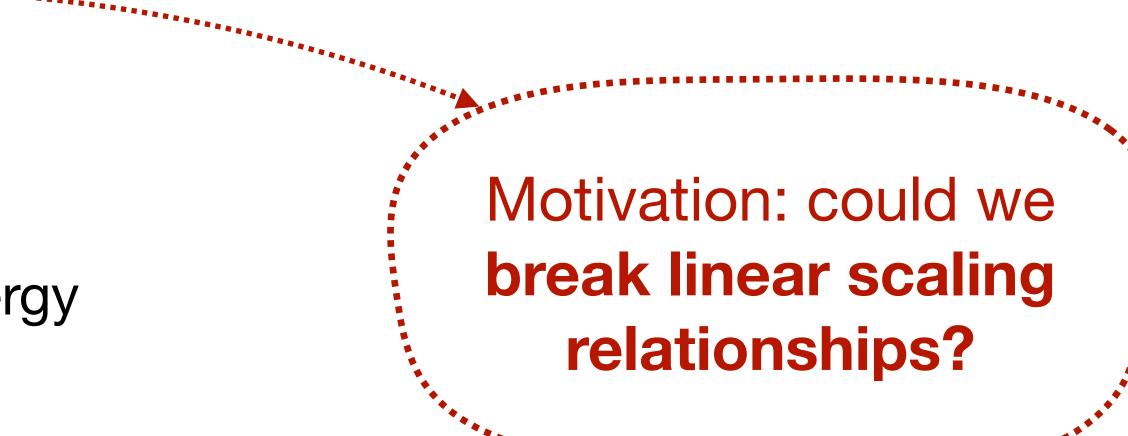
Multi-objective setting Different targets for different adsorbates.

Learn 6 objectives at once!

- Increase E_{ads} for some adsorbates
- Decrease E_{ads} for others
- Multi-objective DQN
- Simultaneously improves adsorption energy in the desired direction by Δ = 0.8 eV on average across all 6 adsorbates.

Adsorbate	1: *CH2	2: *CH4	3: *N2	4: *NH3	5: *OH2	6: *OH
Objective	Increase	Increase	Increase	Decrease	Decrease	Decrease
	mereuse	mereuse	mercuse	Decrease	Decreuse	Decreuse
Initial state	-2.2	-3.3	-1.8	-1.6	-1.9	-1.9
Exp (4): Baseline	-2.2	-3.0	-1.5	-1.9	-3.9	-3.9
Exp (5): Sub-Sampling	-2.3	-3.0	-1.6	-2.1	-3.8	-3.8

Romain Lacombe



Conclusions & Future work

RL for generalized inverse catalyst design Identify promising catalysts for any combination of target adsorbates:

- In practice: conduct a large number of roll-outs.
- Most common terminal states are promising materials on which to focus computational and experimental resources.

Future work

- Better handling of unknown energy states while traversing state space
- Scalar goal-conditioning to find compounds with any given target E_{ads}
- Actor-critic using AdsorbML [2], ML-based DFT for binding energies

Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

Key References

[1] Zitnick et al.: "An Introduction to **Electrocatalyst Design using Machine** Learning for Renewable Energy Storage", 2020; arXiv:2010.09435.

[2] Lan et al. "AdsorbML: Accelerating **Adsorption Energy Calculations with** Machine Learning." 2022; arXiv:2211.16486 (2022).

[3] Materials Project, https:// materialsproject.org

[4] **Open Catalyst Project**, https:// opencatalystproject.org

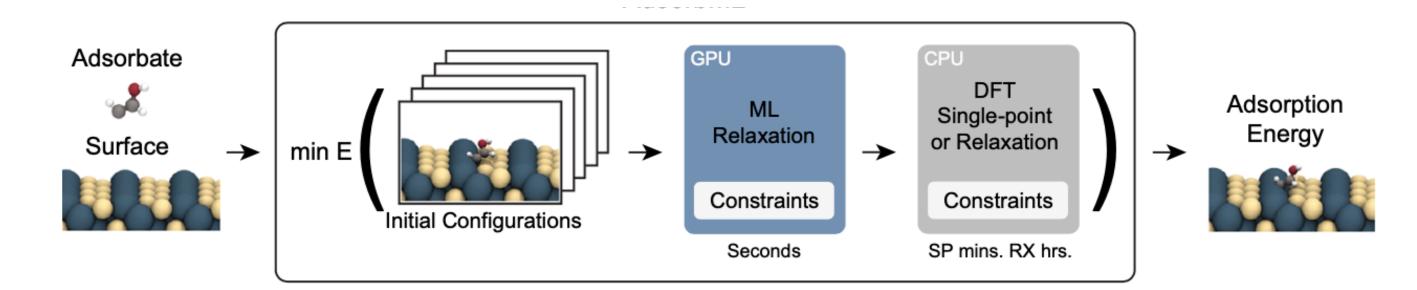
Frontiers in Al for chemical engineering

ML for DFT computations Accelerating simulations

computational npj materials

ARTICLE **OPEN** AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials

Janice Lan^{1,4}, Aini Palizhati^{2,4}, Muhammed Shuaibi^{1,4}, Brandon M. Wood (^{1,4}, Brook Wander², Abhishek Das (^{1,4}, Matt Uyttendaele¹, C. Lawrence Zitnick^{1 \bowtie} and Zachary W. Ulissi^{2,3 \bowtie}



Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

www.nature.com/npjcompumats

Materials generation Generative AI for solid-state structures

Article

ht

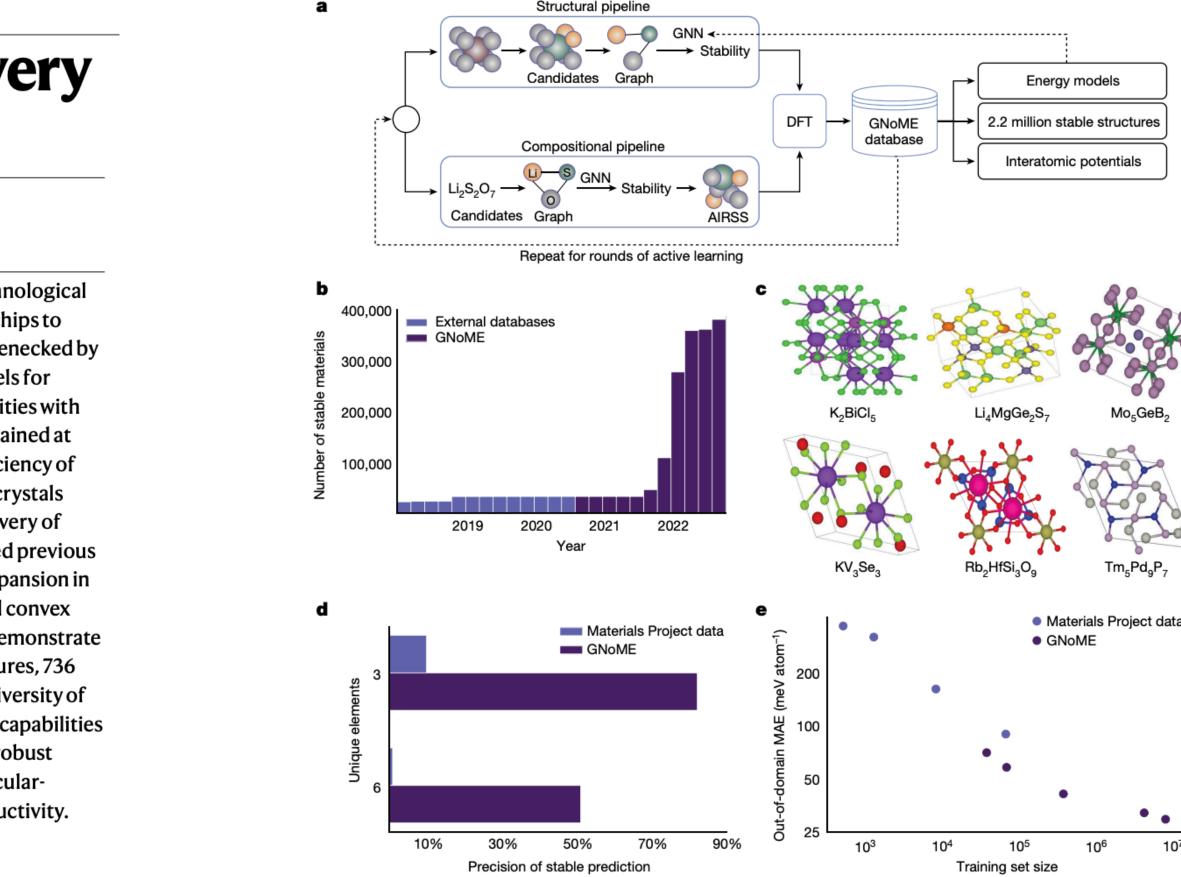
Scaling deep learning for materials discovery

ttps://doi.org/10.1038/s41586-023-06735-9	Amil Merch
eceived: 8 May 2023	Gowoon C
ccepted: 10 October 2023	
ublished online: 29 November 2023	Novel fund
pen access	applicatio batteries a
Check for updates	expensive language, increasing scale can r materials
	identified

chant^{1,3 🖂}, Simon Batzner^{1,3}, Samuel S. Schoenholz^{1,3}, Muratahan Aykol¹, Cheon² & Ekin Dogus Cubuk^{1,3}

nctional materials enable fundamental breakthroughs across technological ons from clean energy to information processing^{1–11}. From microchips to and photovoltaics, discovery of inorganic crystals has been bottlenecked by e trial-and-error approaches. Concurrently, deep-learning models for e, vision and biology have showcased emergent predictive capabilities with ig data and computation 12^{-14} . Here we show that graph networks trained at reach unprecedented levels of generalization, improving the efficiency of s discovery by an order of magnitude. Building on 48,000 stable crystals d in continuing studies^{15–17}, improved efficiency enables the discovery of 2.2 million structures below the current convex hull, many of which escaped previous human chemical intuition. Our work represents an order-of-magnitude expansion in stable materials known to humanity. Stable discoveries that are on the final convex hull will be made available to screen for technological applications, as we demonstrate for layered materials and solid-electrolyte candidates. Of the stable structures, 736 have already been independently experimentally realized. The scale and diversity of hundreds of millions of first-principles calculations also unlock modelling capabilities for downstream applications, leading in particular to highly accurate and robust learned interatomic potentials that can be used in condensed-phase moleculardynamics simulations and high-fidelity zero-shot prediction of ionic conductivity.

Romain Lacombe



Al assistant "CoPilot for Research"

Augmenting large language models with chemistry tools

Andres M. Bran^{12*} Sam Cox^{3*} Oliver Schilter²⁴ Carlo Baldassari⁴ Andrew D. White³ Philippe Schwaller¹² ¹ Laboratory of Artificial Chemical Intelligence (LIAC), ISIC, EPFL ²National Centre of Competence in Research (NCCR) Catalysis, EPFL ³ Department of Chemical Engineering, University of Rochester ⁴ Accelerated Discovery, IBM Research – Europe *Contributed equally. andrew.white@rochester.edu philippe.schwaller@epfl.ch

Abstract

Over the last decades, excellent computational chemistry tools have been developed. Integrating them into a single platform with enhanced accessibility could help reaching their full potential by overcoming steep learning curves. Recently, large-language models (LLMs) have shown strong performance in tasks across domains, but struggle with chemistry-related problems. Moreover, these models lack access to external knowledge sources, limiting their usefulness in scientific applications. In this study, we introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery, and materials design. By integrating 18 expert-designed tools, ChemCrow augments the LLM performance in chemistry, and new capabilities emerge. Our agent autonomously planned and executed the syntheses of an insect repellent, three organocatalysts, and guided the discovery of a novel chromophore. Our evaluation, including both LLM and expert assessments, demonstrates ChemCrow's effectiveness in automating a diverse set of chemical tasks. Surprisingly, we find that GPT-4 as an evaluator cannot distinguish between clearly wrong GPT-4 completions and Chemcrow's performance. Our work not only aids expert chemists and lowers barriers for non-experts, but also fosters scientific advancement by bridging the gap between experimental and computational chemistry. Publicly available code can be found at https://github.com/ur-whitelab/chemcrow-public.

Romain Lacombe

Presentation to Cargnello Group | Jan 12, 2024

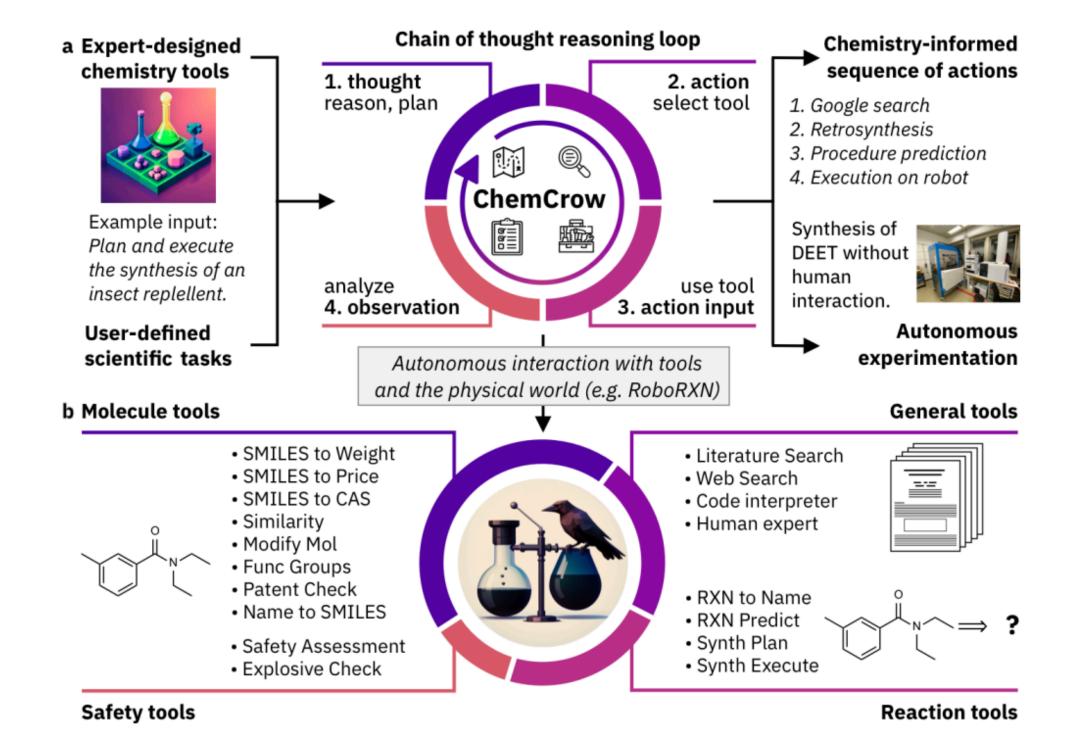
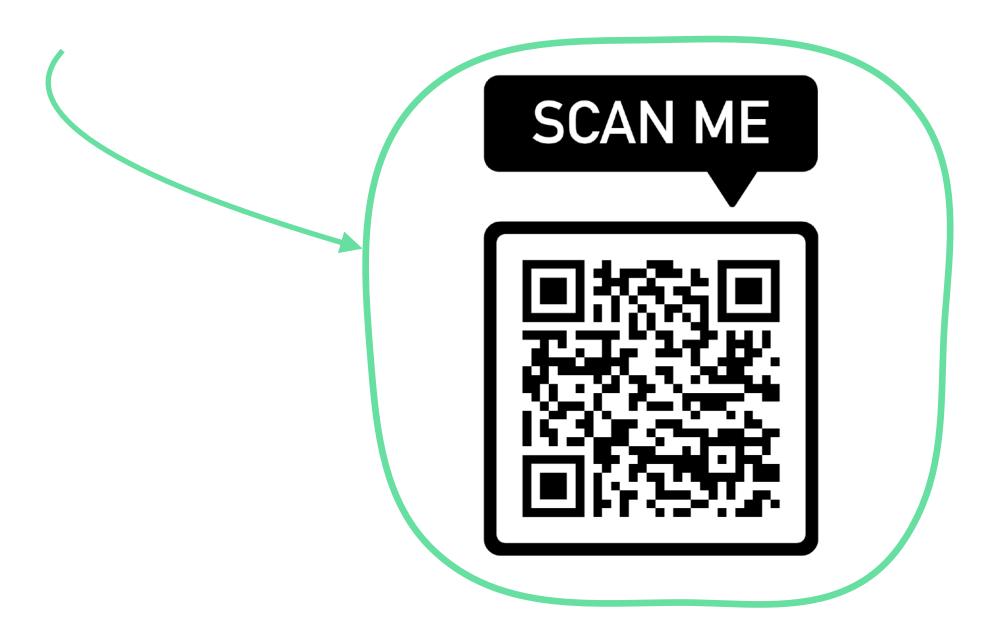


Figure 1: **Overview and toolset**. a) An overview of the task-solving process. Using a variety of chemistryrelated packages and software, a set of tools is created. These tools and a user input are then given to an LLM. The LLM then proceeds through an automatic, iterative chain-of-thought process, deciding on its path, choice of tools, and inputs before coming to a final answer. The example shows the synthesis of DEET, a common insect repellent. b) Toolsets implemented in ChemCrow: reaction, molecule, safety, search, and standard tools.

Thank you! **Questions?**

• Link to papers: https://arxiv.org/abs/2307.12996 https://arxiv.org/abs/2312.02308



Romain Lacombe

- Follow up questions? rlacombe@stanford.edu
- Please get in touch!

