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• Undergraduate in Physics and Math 
(France) then MS Engineering Systems 
at MIT on climate economics (carbon 
markets and refineries)


• Climate technology entrepreneur (Plume 
Labs, acq. by AccuWeather)


• MS ChemEng HCP candidate with a 
focus on AI for chemistry.


• Goal: build better materials/processes 
to help decarbonize at scale.

About me
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Outline
ACS Fall 2023 – AI for Organic Chemistry – Aug 16, 2023

• AI crash course


• Extracting molecular properties from natural language 


• Discovering catalysts with reinforcement learning


• Conclusion: new frontiers in AI for materials
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An AI Crash 
Course



Neural networks

• Inspired by biological neurons


• Activations: multiply inputs by matrix 
weights + apply non-linearities


• Universal Approximation Theorem 
(Cybenko, 1989)


• How to find the right weights?  
Learn by gradient descent!

They’re just (very) complex functions.

WikiMediaLearn more: CS 230
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Why all the hype?
ACS Fall 2023 – AI for Organic Chemistry – Aug 16, 2023

• First neural networks conceptualized in the 1950s: intractable to train.


• Started working well c. 2012: large networks learning from large datasets.


• 2010s-2020s: Deep Learning Era


• “Learning”: don’t program rules, learn them from the data 


• Deep: represent these functions as large neural networks  
(“deep” = large number of hidden layers)

Because these ideas finally work!

Learn more: CS 230
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Paradigm shift: learning from data
ACS Fall 2023 – AI for Organic Chemistry – Aug 16, 2023

Source: François Cholet, “Deep Learning with Python”

Source: ImageNet Large Scale Visual Recognition Challenge

Enabled by GPUs and data scale

Learn more: CS 229
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Paradigm shift: deep neural nets
ACS Fall 2023 – AI for Organic Chemistry – Aug 16, 2023

Krizhevsky et al., 2012, ImageNet Classification with 
Deep Convolutional Neural Networks Vaswani et al., 2017, Attention Is All You Need

Learn more: CS 231N Learn more: CS 224N & CS 224U
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Flavors of learning
Different recipes, same neural nets

• Supervised learning: learn to match a value/label 
Ex: classification (image → dog or cat?), regression (molecule → solubility?) 


• Generative learning: learn to generate an object 
Ex: AA sequence → 3d structure of a protein (AlphaFold)


• Reinforcement learning: learn through play 
Ex: play millions of games → beat humans at Go (AlphaGo)


• Contrastive learning: learn to match/contrast samples   
Ex: several face photographs → are they the same person?

Learn more: CS 230

Learn more: CS 236 & CS 279

Learn more: CS 224R

Learn more: CS 224W
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Why is this relevant?
Two examples of ChemE applications

• Molecular properties prediction: learn to predict properties of an organic 
molecule given only its 2-d graph structure. 
ACS Fall 2023 AI for Organic Chemistry workshop


• Catalyst discovery: explore large spaces of possible metal catalysts fitting a 
target adsorption energies profile. 
NeurIPS 2023 Accelerated Materials Discovery workshop
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Extracting molecular 
properties from 
natural language
https://arxiv.org/abs/2307.12996



Contrastive learning
• Tasks in ML for chemistry require deep molecular graph representations


• GNNs can be trained to learn effective representations through  
contrastive learning:

Graph A

Graph B

Graph C

zA

zB

zc

Latent Space

Similar

Dissimilar

Close

Distant

Molecular Graphs
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Can we learn directly from scientific papers?

ACS Fall 2023 AI for Organic Chemistry workshop
https://arxiv.org/abs/2307.12996

Treasure trove of collective knowledge now accessible.
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Align graph and text latent representations

Latent Space 
Do aligned representations improve property predictions?

Molecular Graphs

Graph A

Graph B

Graph C

zA

zB

zc

Natural Language 

Textual descriptions of the 
properties of molecules:

A

B

C
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Using contrastive learning.



Batch: i = 1…N

fG : 𝒢 → z𝒢{�̃�1
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i }

Retrieval Sample text 
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Contrastive  
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Molecular  
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Aligning graph and text representations

Su et al. 2022: https://arxiv.org/abs/2209.05481
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Using contrastive learning.

https://arxiv.org/abs/2209.05481


Could we generate molecules from text?

Molecular graph 
(Caffeine ☕)

Text prompt 
(`make me coffee’)

Romain Lacombe Presentation to Cargnello Group | Jan 12, 2024



Answer: yes!

“This molecule has 
a hydroxyl group 
and a carbonyl group”

“This molecule is 
hazardous for health”Prompt

Generation
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But not very well.



Experiment: evaluation

fG : 𝒢 → z𝒢

Evaluation on 
downstream tasksEncoder

MLP( ⋅ ) ∘ fG : 𝒢 → ŷ𝒢

Evaluate graph 
representations on 
property prediction tasks 
(MoleculeNet) 


• BACE: inhibitors of a 
human enzyme involved 
in Alzheimer. 


• BBBP: blood-brain 
barrier penetration by 
small molecules. 


• Clintox: classification of 
drugs approved/rejected 
by the FDA for toxicity. 


• MUV: virtual molecule 
screening built on 
PubChem. 


• SIDER: adverse side 
reactions of marketed 
drugs.


• Tox21: classification of 
toxicity measured by 
biological reactions and 
stress response. 


• ToxCast: 600 tasks 
linked to in vitro 
toxicology data.
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MoleculeNet benchmark.



Results
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Graph only

Graph  
+ natural  

language text



Experiment: Can AI learn from chemistry?

• GraphCL (You et al. 2020) contrastive pre-training uses random node 
dropping and random subgraphs:

You et al. 2020: https://arxiv.org/abs/2010.13902

No guarantee that augmented graphs are valid molecules! 

GraphCL GIN reached SOTA for unsupervised learning 
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https://arxiv.org/abs/2010.13902


Random graph augmentations can lead  
to strong contrasts in chemical space
• Ex: random subgraph.

Random 

subgraph Very different molecule
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• Ex: drop random atom.

Random 

node drop

Very different molecule

Random graph augmentations can lead  
to strong contrasts in chemical space
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• Ex: drop random atom.

Random 

node drop

Disconnected  
graph

Random graph augmentations can lead  
to invalid molecules

Romain Lacombe Presentation to Cargnello Group | Jan 12, 2024



Idea: use addition/elimination organic reactions! 
Transform initial graph into better behaved augmentations

Initial  
molecule

Valid augmented  
molecules

What if we used organic reactions as graph 
augmentations?
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• Ex: methylation/de-methylation.

Methyl

group

Valid + close to original molecule

What if we used organic reactions as graph 
augmentations?
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• Ex: amination/de-amination.

Amine

group

Valid + close to original molecule

What if we used organic reactions as graph 
augmentations?
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Results
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Graph only

Graph  
+ natural  

language text



Catalysts 
discovery with 
reinforcement 
learning
https://arxiv.org/abs/2312.02308



RL for catalysts discovery

NeurIPS 2023 AI for Accelerated  
Materials Design workshop

https://arxiv.org/abs/2312.02308

AI can master Go. What about materials?
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Open Catalyst Project

• OC20 and OC22 datasets by 
Meta AI and Carnegie Mellon


• 1.3 million molecular relaxations 
from over 260 million DFT 
calculations.


• Challenge and leaderboard


• Current lead: ~0.3 eV MAE.

Very large DFT dataset
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RL for catalysts exploration
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Policy: materials traversal 
• States: OC20 catalysts 
• Actions: traverse the 

materials space with 
sparse rewards

Rewards: adsorption energy 
• Offline from OC20 
• Goal: bind more/less to 

target adsorbates e.g H2O

Catalyst material

State St

π(a |St, g)

r(S, g) ∝ f (Eads(St+1, adsi), g)

Updated catalyst

State St+1

Not known for all states!



Simplifying the problem
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Not known for all states!

• Data set: OC20 adsorption energies 
for (catalyst, adsorbate) pairs


• States: ~160,000 unary, binary and 
ternary compounds of 55 elements 
(ignoring stoichiometry).


• Actions: steps to traverse the 
dataset of materials.


• Goals: targets for each adsorbate 
(strong binding/low energy vs. weak 
binding/high energy)


• Rewards are functions of 
adsorption energy of catalysts for 
target adsorbates.



Reinforcement learning setting
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Not known for all states!

Multi-objective Goal-conditioned Deep Q-Network      
S: compounds   

a: actions   

g: goal vector (+1, or -1 for adsorbate i)    

r: reward (f(Eads)) 
 
 
Bellman Equation for Q-learning:                           Evaluation metric ∆:

Q*(a |S, g) = r(a |S, g) + γ max

a
(Q*(a |S′ , g)) Δ =

1
N ∑

i∈final

− (Eads(Si)) −
1
N ∑

j∈initial

− (Eads(Sj))

Learn more: CS 224R

The math behind training.



Unary compounds
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Not known for all states!

55 elements in OC20

• 86 single element states 
• 5 actions: { _ | ← | → | ↓ | ↑ }   
• Goal: strong binding (minimize Eads) 
• Simple Q-learning reaches top-2 states 

for ~95% of roll-outs. 

• High performance agent: ∆ = -5.9 eV.

Navigating the Periodic Table.



Compounds: random edge traversal
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Not known for all states!

3-hop ego graph of lowest energy state  
for *OH2 adsorbate (SiC)

• Insight: constrain states and actions to 
make DQN learning more tractable


• Only traverse known energy states. 
• Traverse subgraph with random edges. 

Learn only 5 actions: 

- <stop>

- <add> a random element

- <delete> element 1, 2, or 3.


• High performance agent: ∆ = 4.1 eV.

Larger, sparser dataset, hard to navigate.



Multi-objective setting
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Not known for all states!

Different targets for different adsorbates.

• Learn 6 objectives at once! 
- Increase Eads for some adsorbates

- Decrease Eads for others 

• Multi-objective DQN 

• Simultaneously improves adsorption energy 

in the desired direction by ∆ = 0.8 eV on 
average across all 6 adsorbates. 

Motivation: could we  
break linear scaling  

relationships?



Conclusions & Future work
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Not known for all states!

RL for generalized inverse catalyst design 
Identify promising catalysts for any combination of target adsorbates:

• In practice: conduct a large number of roll-outs.

• Most common terminal states are promising materials on which 

to focus computational and experimental resources.


 
Future work 
• Better handling of unknown energy states while traversing state space

• Scalar goal-conditioning to find compounds with any given target Eads 

• Actor-critic using AdsorbML [2], ML-based DFT for binding energies
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Frontiers in AI 
for chemical 
engineering



ML for DFT computations
ACS Fall 2023 – AI for Organic Chemistry – Aug 16, 2023Accelerating simulations
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Materials generation
ACS Fall 2023 – AI for Organic Chemistry – Aug 16, 2023Generative AI for solid-state structures
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AI assistant
“CoPilot for Research” 
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• Link to papers:  
https://arxiv.org/abs/2307.12996 
https://arxiv.org/abs/2312.02308


• Follow up questions? 
rlacombe@stanford.edu


• Please get in touch! 

 

Thank you!
Questions?
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